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ABSTRACT A finite element method based on the absolute nodal coordinate formulation (ANCF) is ap-
plied to the dynamic analysis of high-speed rotors in this stydy. In the ANCF, elements are parameter-
ized by slope vectors in the transversal directions allowing the description of shear and cross-sectional
deformations. This study employs a four-node high-order ANCF beam element with derivatives of or-
der three in transversal directions. The element employs one position vector and nine slope vectors at
each nodal location. The high-order ANCF beam element is applied to various benchmark tests with
circular cross-section structures. As numerical examples demonstrate the beam element is capable of
capturing complex cross-section deformation modes more-accurately than the low-order ANCF beam
formulations.

1 Introduction

High-speed motors can be the ideal solution for many pumps, compressors, generators and machine tool systems.
There are, however, numerous challenging areas of dynamics associated with the design of high-speed rotating
systems. For this reason, the linear theory of rotor-dynamics may not lead to acceptable solutions. It is noteworthy
to point out that high-speed rotating machines are subjected to cross-section deformation such as radial expansion,
which is proportional to speed of rotation. Significant cross-section deformation mostly occurs in tubular shafts
and results from gyroscopic and centrifugal stiffening effects. This may successively influence the stability of
shaft [1] .

Use of finite element based formulation is the prevalent approach to analyzing the deformation of the rotating
shaft. To analyze shafts with complicated geometries, or under large deformation, the use of solid finite element is
typically required [2]. This, however, can lead to high computational costs, as a solid finite element model often
consists of a very large number of degrees of freedom. Beam elements with a high number of degrees of freedom
in the transversal directions, such as high-order beam element based on absolute nodal coordinate formulation
(ANCF), are the alternative to solid element in the prediction of cross-section deformation of rotating shaft.

In the absolute nodal coordinate formulation, the nodal coordinates of beam and plate elements are defined using
global position vector and components of the deformation gradient. Use of the deformation gradients in element
transverse direction allows the description of shear and thickness deformation in the formulation. The first high-
order elements to alleviate locking due to cross-section deformation were introduced by Matikainen et al. [3, 4, 5].
Shen et al. [6] introduced several high-order beam element models subjected to large deformation to characterize
the cross-section deformation. Subsequently, Orzechowski and Shabana [7] studied the high-order beam element
with 42 degrees of freedom originally proposed in [6]. They examined the high-order beam element with a variety
of cross-section shapes, including a rectangular tube and an ellipse to investigate the warping effect. Recently, by
comparing several low- and high-order beam elements, Ebel et al. [8] has demonstrated that in three- and four-
node high-order beam elements with a rectangular cross-section, more-accurate results can be obtained compared
to transversally linear beam elements.



This paper applies an ANCF based approach to the dynamic analysis of rotating shafts. The approach uses the
high-order beam element denoted as 34X3 proposed by Ebel et al. [8]. This paper presents a number of static
and dynamic benchmark tests, and their results are compared to the reference solutions from literature and the
commercial finite elements code ANSYS. The introduced approach is found to be able to predict the cross-section
deformation of a circular structure.

2 Kinematics of high-order ANCF beam element

This section reviews the kinematics of the employed element. This study employs a four-node high-order ANCF
beam element with 120 degrees of freedom [8]. The nodal location is depicted in Fig. 1 in which ei is the vector of
nodal coordinates that includes positions and derivatives evaluated at the i th node. The depicted nodal degrees of
freedom can be also expressed in vector form as

Fig. 1: Illustration of the employed ANCF beam element and its first- and high-order directional derivatives as degrees of freedom [8].
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The element’s polynomial basis is

β
[34X3] := [1, x, y, z, xy, xz, x2, x2y, x2z,y2, xy2, x2y2, z2, xz2, z2, yz, xyz, x2y, x3, x3y

, x3z, x3yz, x3y2, x3z2, y2z, xy2z, x2y2z, x3y2z, yz2, xyz2, x2yz2, x3yz2, y3,

xy3, x2y3, x3y3, z3, xz3, x2z3, x3z3] .

In the ANCF, the position vector r of an arbitrary particle, can be expressed as follows:

r(ξ, t) = Sme(t) , (2)

where Sm is the shape function matrix containing 40 shape functions. Since the 34X3-element is isoparametric,
the resulting shape functions can be given in both a physical coordinate system (x,y,z) and a bi-normalized local
element coordinate system (ξ ,η ,ζ ) with ξ =

x
lx

, η =
y
R

and ζ =
z
R

, where lx and R are the length and diameter

of the beam element, respectively.

3 Equations of motion

The weak form of the equations of motion of an ANCF element can be expressed as∫
V

ρ r̈ ·δrdV +
∫

V
S : δE dV −

∫
V
b ·δrdV = 0 , (3)
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where the first integral is associated with the inertia, the second integral is associated with the elastic forces, and
the third integral concerns externally applied forces [9]. In Eq. (3), S is the second Piola-Kirchhoff stress tensor,
E is the Green-Lagrange strain tensor, b stands for the vector of body forces and V is the integration domain over
the element in the reference configuration. The present study employs three-dimensional elasticity in the form of
the St. Venant-Kirchhoff material model that assumes a linear relationship as follows:

S = λ I tr(E)+2GE , (4)

where λ and G are the 1st Lamé elastic constant and shear modulus, respectively. The Green-Lagrange strain
tensor is defined as

E =
1
2
(C−I) , (5)

where C is the right Cauchy-Green strain tensor and can be expressed in terms of the deformation gradient F as

C = FT F . (6)

As r defines the current position of an arbitrary particle and ξ =
[
ξ η ζ

]T, the deformation gradient F reads

F :=
∂r

∂r0
=

∂r

∂ξ
J −1 , (7)

where J = ∂r0
∂ξ

is the Jacobian matrix that provides a transformation between the physical and local coordinate

systems. The vector of elastic forces of the i th beam element is expressed as follows:

F e = lx
∫

A
S :

∂E

∂e
dA , (8)

which holds for a circular cross-section with A = (η ,ζ ) : η2 +ζ 2 ≤ R . The integral of Eq. (8) is computed based
on standard Gaussian quadrature formulas [10]. In case of circular cross-section∫

A
F e (η , ζ )dη dζ = π

R2

4

n

∑
i=1

wiF e (ηi , ζi) , (9)

where n is the number of Gaussian points along cross-section axes (η , ζ ) and wi is weight of the i th integration
point.

4 Numerical examples

The numerical examples compare displacements based on the ANCF beam element and commercial finite element
code ANSYS in static and dynamic cases. The tests are carried out using circular cross-section. A high-order
ANCF beam element with 120 degrees of freedom is used, while ANSYS employs the quadratic 20-node solid
element, SOLID186 in the solution of the numerical examples.

4.1 Simply supported beam

This section presents a bending test composed of a circular cross-section beam with simply supported boundary
conditions. The beam is of the length L = 2 m and radius r = 0.25 m. Young’s modulus and Poisson’s ratio are
set to be E = 2.07×1011 N/m2 and ν = 0.3, respectively. The surface force Fy =−1.08×109/rπL N/m2 is
applied on the top surface of the beam. The elastic forces are computed using the Gaussian quadrature rule with
an appropriate number of integration points. The simply supported boundary conditions in the ANCF beam are
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described by constraining the first three nodal degrees of freedom at one end and the second and third degrees of
freedom at the other end. The simply-supported boundary conditions in ANSYS are modeled using node-surface
contact elements, CONTACT175 / TARGET170. To properly apply the vertical surface force, the surface effect
element SURF154 is used in ANSYS. The force is applied to the underlying solid elements through the surface
effect elements, SURF154. Tab. 1 shows the numerical results based on ANCF and ANSYS. The results obtained
with the high-order ANCF element give converged solutions with 32 beam elements. The displacement of the
selected point located in the middle of the top surface of the beam is in good agreement with ANSYS.

Tab. 1: Comparison of displacements of the top surface point of the beam undergoing bending using element 34X3 against the displacements given by
SOLID186 in ANSYS.

Number of elements xtop [m] ytop [m]
2 −0.02088 −0.18468
4 −0.01990 −0.18158
8 −0.01962 −0.18075
16 −0.01954 −0.18052
32 −0.01951 −0.18043
96×24×24 (SOLID186) −0.01944 −0.19095

4.2 Rotating shaft

This section analyzes the dynamic response of a flexible shaft supported at its ends by bearings. The shaft is
connected to the ground by a revolute joint at one end and a cylindrical joint at the other end. The shaft undergoes
rotation with angular velocity Ω , defined using a smoothed ramp function from zero at time t = 0 s to Ω(t) =
5000RPM at t = 2 s , as illustrated in Fig. 2. At the initial time, the shaft is at rest. The length of the shaft is L = 2m
and the shaft is made of steel with density of ρ = 7850 kg/m3, Young’s modulus of E = 2.10× 10 11 N/m2, and
Poisson’s ratio of ν = 0.3. The cross-section is circular with a radius of r = 0.1m. An analytical formula for the
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Fig. 2: Rotating shaft with applied angular velocity as ramp function of time

radial expansion of a solid cylinder [11] can be expressed as:

∆r =
ρΩ 2(1−ν)r 3

4E
, (10)

4



where ρ is density, ν is Poisson’s ratio, E is Young’s modulus, Ω is the rotational frequency, and r is the radius of
the shaft. According to Eq. (10), radial expansion ∆r is proportional to the square of the rotational frequency Ω.

The flexible shaft is also modeled by commercial finite element software ANSYS using 3D solid element type
SOLID186. Fig. 2 depicts the values of the angular velocity during simulation. A non-linear dynamic transient
analysis was performed within the time span of 2 s, using a time step of 0.02 s. The boundary conditions are applied
at the pilot nodes of both ends of the shaft to define the revolute and cylindrical joints. The two pilot nodes belong to
node-surface contact elements CONTACT175 / TARGET170. Tab. 2 compares the numerical values obtained for
radial displacement by ANSYS and the ANCF beam element. The ANCF result shows relatively good agreement
with the value given by Eq. (10), even with only one high-order element. Note that applying boundary conditions
on the center nodes instead of the whole areas prevents the cross-section from being constrained, which would lead
to non-uniform radial expansion. Because of the constant mass matrix of the element in ANCF beam formulation,
the centrifugal and Coriolis inertia forces are identically equal to zero [12, 13].

Tab. 2: Comparison between the resulting radial cross-section expansion obtained by ANSYS, ANCF and analytical approach in Eq. (10)

Analysis approach ∆r [µm]
Analytical 1.7934
Finite Elements (ANSYS) 1.8177
ANCF Beam 34X3 2.0178

5 Conclusions

This paper examined the high-order ANCF beam element originally introduced by Ebel et al. [8] in rotating shaft
applications. The four-node beam element was applied to a number of benchmark tests to investigate its perfor-
mance. This study examined the element in static and dynamic tests. The capability of the element to predict
cross-sectional deformation and large displacements and accurately capture the cross-section expansion in a ro-
tating shaft was validated. As demonstrated by numerical examples, the high-order beam element can capture
the complicated cross section deformation more-accurately than the low-order ANCF beam element introduced
by Nachbagauer et al. [14, 15]. Therefore, the ANCF beam element can be applied to the dynamic analysis of
high-speed rotors.
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