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ABSTRACT — This study presents a new formulation of the dynamics of systems involving a single
frictional contact. An analytical dynamics framework is employed, together with some fundamental
tools of differential geometry. This provides a foundation for applying Newton’s law of motion to
systems possessing configuration manifolds with boundary. Based on this, it is shown that the contact
phase takes place inside a thin boundary layer, where the dominant dynamics is described by a set
of three ordinary differential equations. The study includes a selected set of examples, with emphasis
put on investigating phenomena arising during central or eccentric collision of solid bodies.

1 Introduction

Dynamics of systems possessing mechanical components that come in contact during their motion is a classical
subject of Mechanics (e.g., [1-6]). This is due to both its large practical significance and the challenging theoretical
issues arising in the effort to predict and understand the various phenomena observed and related to contact events.
Previous studies have demonstrated that friction effects are responsible for the appearance of a plethora of new
phenomena during impact. Based on the type of approach adopted, these studies can roughly be divided in two
general categories. In the first category, the contact event is assumed to take place in an instantaneous manner.
This leads to the appearance of a discontinuity in the velocities, accompanied by unbounded contact forces in order
to avoid interpenetration. This, in turn, leads to the necessity of employing techniques of the so-called Nonsmooth
Mechanics (e.g., [1-5]). In essence, these approaches lead to prediction of the post-impact velocities through an
algebraic process, making use of the pre-impact velocities and appropriate restitution coefficients. On the other
hand, the second category of previous studies on systems with unilateral constraints is based on the Darboux-
Keller approach (e.g., [6-10]). Their common characteristic is that they consider the normal impulse as an
independent time-like variable and lead to a set of equations of motion during the contact phase in the form of
ordinary differential equations (ODEs).

The present study is a continuation of earlier work of the authors [11,12] and applies to a class of constrained
mechanical systems, involving a single impact event with friction. The approach taken is novel compared to
previous studies on the subject. In particular, the analysis applied is carried out within the classical framework of
analytical dynamics and can handle systems with general properties, including rigid and discretized deformable
bodies. The formulation is based on a proper application of Newton’s law of motion during the contact phase. The
final outcome is a completely continuous formulation, in contrast to the approaches based on non-smooth
techniques. This is achieved through the use of some key ideas and concepts of b-geometry, which provide a
natural and strong setting for studying mechanical systems subject to a unilateral constraint [13]. Namely, after
defining the boundary of the configuration manifold and determining the essential geometric properties needed
for the application of the law of motion inside a thin layer starting at this boundary, it is shown that the dominant
dynamics during a single frictional collision is described by a set of three coupled ODEs. These equations describe
action in a three dimensional distribution of the configuration manifold, which is related directly to the action in



the physical space, where the contact event examined takes place. Using time as an independent variable presents
an advantage over the Darboux-Keller approaches, since it provides a valuable time scale for investigating the
part of the motion inside the boundary layer. Moreover, the general spirit of the new approach is entirely different.
Instead of modeling the contact with stiff springs, which demands to give up the rigidity assumption in case of a
rigid body contact, application of the theory for a manifold with boundary reveals that the associated contact action
is modeled by a large change in the inertia properties [ 13], in combination with the appearance of a strong repulsive
force. More specifically, the components of the metric and the connection employed along the normal to its
boundary vary in a quite rapid fashion in the vicinity of the boundary in the configuration space. This causes a fast
deceleration of the figurative particle modeling the motion of the mechanical system in the configuration manifold,
as it approaches the boundary. Also, once this particle enters the boundary layer, it is pushed away from it by a
strong repulsive force, which is exerted on it until its exit from the boundary [12].

In the second part of this study, the attention is shifted on applying the new analysis to investigating collision
of a particle with a rigid wall and continues with examination of central and eccentric collisions of solid bodies.
The more accurate modeling provides a strong basis and leads to a better understanding of the phenomena
involved. Finally, the analysis is presented in a way that permits its extension to more complex problems, involving
situations with multiple contacts [14].

The organization of this paper is as follows. First, the general theoretical setting is presented in the following
section. Then, the essential geometric properties are presented in Section 3. This information is employed in
Section 4, where the equations governing the motion during the contact phase are derived. Next, a critical
comparison with previous formulations is presented in Section 5, while several characteristic examples are
examined in Section 6. Finally, the new findings are briefly summarized in the last section.

2 Manifolds with boundary and mechanical systems with contact

This study is a continuation of recent work of the authors on the dynamics of mechanical systems subject to
unilateral constraints [12]. The new ingredient is that the contact involves frictional effects. Adopting the general
framework of Analytical Dynamics, the spatial configuration of the system is described by a finite set of
generalized coordinates, ¢ =(¢',...,q"), selected to be minimal. These are related to a fictitious point p , moving
as a function of time ¢ on an n -dimensional manifold M , the configuration manifold of the unconstrained system
[15]. Then, the presence of a contact event is signaled by an inequality condition

p(p)20, M

assuring no interpenetration. The equality in this condition defines a hypersurface in M and the motion of point
p occurs on one side of this hypersurface only. In this way, the function p acts as a boundary defining function
on manifold M and gives rise to a new manifold

X={peM: p(p)=0},

with dimension » [13]. This manifold possesses a boundary X and an interior X° = X \0X . Then, the new
manifold is represented by the disjoint union

X=X"1lox,

while the motion of the class of systems examined is represented by a curve on the constrained manifold X . The
tangent vector to such a curve at a point p belongs to an n-dimensional vector space 7, X , the tangent space at
p - Therefore, if B, ={e, ... e,} isabasisof T, X, then any of its elements can be put in the form

D S i
u=u'e =ue +u'e,,

with the summation conventions



n i n i
u’e,zz u'e, and u’e.zz, u'e, ,
= =1 = =i =2 =i

so that a capital Latin index ranges from 1 to » and a lower case Latin index runs from 2 to n.

The tangent space at each point of X is accompanied by a cotangent space, denoted by T ; X . In fact, to each
vector u of 7,X there corresponds a covector u of T ;X . In dynamics, it is convenient to establish this
correspondence by using the following dual product

u'(w)=(u,w)y, VweT X 2)

where (-,-) represents the inner product of the vector space 7, X . In this way, for any basis B, of 7 X, a dual
basis B, ={¢' ... ¢"} canbeobtained for 7,.X , by employing the conditions ¢’ (e,) =&, , where [,J =1,...,n
and the symbol in the right hand side denotes a Kronecker’s delta [15]. Finally, definition of the vector spaces
T,X and T, ; X ateach point of manifold X is essential in creating two other spaces, by
TX=UTX and T'X=1IT,X,
peX peX

known as the tangent and cotangent vector bundles over X , respectively [16].

If V(X) denotes the space of all smooth vector fields on X, the integration of its elements to obtain the
corresponding flows is not closed on X . To fix this problem, the theory of manifolds with boundary, or b-
manifolds [13], is employed. In particular, these vector fields are elements of the space

V,(X)={V eV(X): Vistangent to 0X}.

This means that if the local coordinates x = (x',...,x") are introduced at a point p of the boundary &X , so that
p=x'>0, then any element of a vector field belonging to ¥, (X) can be put in the form

”Xzaxlgl +a’gi , 3)

over a holonomic basis B, ={g,,g,,...,g,} , where g, = d/ox' are tangent vectors to the coordinate lines starting
at p [15]. Therefore, the special set "B = (x'g,g,,...,g,} forms a basis for V,(X) at each point near the
boundary. The first element of this set vanishes at pgints on the boundary, but it can be shown that there exists a
new vector bundle over X , denoted by ’T X , where the component vector space T X 1S n-dimensional even at
points of the boundary 6X [13]. A companion b-cotangent bundle "7"X can also be defined in a similar manner.

Then, at a point p of dX , a typical element of “7"X can be expressed in the form
1

Ry LNy 4
X

with dx’ =g'. This demonstrates that the set "B, ={dx'/x',dx’,...,dx"} represents a basis of "T, X near the
boundary. Finally, both the b-tangent bundle "7X and the b-cotangent bundle 7" X coincide with the ordinary
bundles TX and 7" X , respectively, away from the boundary (for more details, see [13] and [12]).

3 [Essential geometric properties of a manifold with boundary

In determining the geometric properties of manifold X, it is convenient to employ two special bases in prX .
The first corresponds to a local x-coordinate system, as defined at the end of the previous section, while the
second is related to the original g -coordinate system, denoted by B, ={e, ... ¢,} and B, ={e, ... e, },
respectively. Then, any element of ” T,X canbe expressed in the following two alternative forms

'v=x'e,=q"e,.
By considering the corresponding transformation between 8, and B, , expressed in the form

4l _ nl
e, =4.e, or e, =B e,, (5)



for I,I'=1,...,n [15], the components of a b-vector in those bases are related by
x'=4¢" and §"=B'%", (6)

where matrix 4=[A41] is the inverse of matrix B=[B/ 1.

Within this setting, the components of the b-metric tensor can now be obtained. This tensor has components
g, =8, =(e,;,e,) withrespect to a basis of the x -coordinate system and is virtually unaffected by the presence
of the boundary at points away from the boundary 0X , i.e.,

8, =8, over X, (7

with G =[g,,]. Near the boundary, the b-metric is affected in a significant way [13]. In particular, one can always
find a special x-coordinate system, where the metric matrix can be put in the block diagonal form

—~ — §11 QT
G= = —_ |, 8
[g,/] |: 0 GT:| (8)
with
g, =8y +8&,- )

The term g,, is solely due to the presence of the boundary and appears in the explicit form
§11:§11/(x1)2 and g,=¢,=g,=0. (10)

By employing the basis transformation expressed by Eq. (5), the metric components in the x-coordinate
system can be related to the components of the metric with respect to the g -coordinate system [15], through

9% :BfBj’gw' and g, =A, 478, (11)
Then, using Eq. (9), it is easily obtained that near the boundary
8 =8+ &> (12)
which is similar in form to Eq. (9). Moreover, taking into account Eq. (11), the last term is obtained through
&y = AII'A.II’ &
Clearly, only the first line of matrix 4=[A4],] needs to be specified for determining g,,. , which is evaluated by
4. =¢(e,)=(Vp.e,), (13)

so that the gradient vector Vo is normal to the boundary hypersurface defined by o(¢)=0.
Next, in analogy to Eq. (9), the b-affinities are also decomposed in the form

Af =N + AL, (14)

with respect to a basis of the x-coordinate system. The terms A%, coincide with the affinities of the ordinary
vector bundle 7 X, defined over the extension manifold M , while A}, are terms arising from the presence of
the boundary. The latter terms are negligible away from 06X , so that

ALY =AY over X°. (15)
Moreover, the correction terms A’ in Eq. (14) are in fact components of a tensor [12]. Also,
Apy =Agy + AL, (16)

which has a similar structure to Eq. (14), while the component A;, has the following form



Al = Al =—1/x". (17)
This term contributes to all the b-affinities of the g -coordinate system through

K _ 41 41 pK Al
AN, =44 BXA

11>

which involves only terms of the form 4}, and B/ ' [12]. The first of them are determined by Eq. (13). In addition,
using Eqgs (5) and (11) together with the identity g'’'g S = 51? , it can be shown that

BII Zg” Aj’g.ll‘
Therefore,
BII = g” A,ll’gll >

which implies that B/ " can be evaluated by knowledge of the known components A}, only. Moreover, the affinities
A¥, are transformed back to the basis of the ¢ -coordinate system by

K _ 1 J K' A K K' 4K
AE, = AL A BEAS + BE 4K

4 Equations of motion for the problem of single contact with friction

The true path of the figurative particle representing the motion on the configuration manifold is determined by
application of Newton’s law [11,16]. On a manifold without boundary, this law is expressed in the form

V=1 as

where V represents an affine connection on the manifold, so that the left hand represents the covariant differential
of the generalized momentum p~ along a path on the manifold with tangent vector v [17], so that

V,p =(p, — A5 pv)e,
with components of the generalized momentum given by

P ngJVJ- (19)

In addition, f~ represents the generalized applied forces. On manifold X , this law appears in the form
sz?*=f*’ (20)

since the appropriate quantities live in the b-tangent space T,X and the b-cotangent space T ; X , respectively.

According to the material presented in the previous section, both the metric components and the affinities
involved in Newton’s law are affected in a significant manner by the presence of the boundary. However, this
occurs only within a layer starting at the boundary X of X, with a relatively small width &, introduced by the
unilateral constraint examined. On the other hand, it is clear that the laws of motion expressed by Egs (18) and
(20) are identical within the interior X° of manifold X . This picture is illustrated by Fig. 1. First, in Fig. la is
depicted the original configuration manifold M , including the constrained configuration manifold X , which
results by imposing condition (1). Then, in Fig. 1b is shown a magnified picture of the boundary layer area
surrounding the neighborhood of a point p on X . Apart from the special x-coordinate system, originating at
p and having axis x' normal to the boundary, two curves (y, and y ) belonging to the special b-vector field
V,(X) , passing tangentially through point p with a different curvature, are also shown.

The focus of the present study is now shifted to the interior of the boundary layer. As a first step, this
necessitates an appropriate scaling of the terms involved in the equations of motion [18]. This task is most
conveniently performed in a local x-coordinate system. Then, using the above analysis and keeping only the
dominant terms, it can be shown that for points near the boundary Eq. (20) is replaced by
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p—Alpv' - f,=0. (1)
and
p—N, py - f=0, (22)

for i=2,...,n. For a frictionless contact, all terms in the last equation are O(l), while those in Eq. (21) are
0(1/ x") . For this reason, the repulsive forcing arising within the boundary layer is chosen by the expression

F iy =i
X

ox'
(x')’

The first term in the right side models the effect of a force generated by a gravity type potential. It represents
a strong force pushing the figurative point away from the boundary. On the other hand, the second term is
associated with the dissipation of energy taking place during the motion within the boundary layer. Since this
force must vanish in the outer region, a smooth function §(x';a,b) is also included in Eq. (23) in order to guarantee
a smooth transition of the boundary force from the inner to the outer region of the boundary layer [12].

13(x';a,b). (23)

. layer 2 ‘\GX (p=0)

Fig. 1: (a) Original configuration manifold M and constrained manifold X , for a system subject to a unilateral constraint.
(b) Magnification around a boundary point p .

The generality of the geometric approach employed makes possible the consideration of contact events arising
from the interaction between any combination of particles, rigid bodies and deformable bodies. In accordance to
the general setting of Analytical Mechanics, the behavior of these bodies in the physical space, denoted by E’, is
analyzed in the configuration space X of the mechanical system examined. Apart from determining the
corresponding geometric properties, this requires a set up of mappings between the physical space and the
configuration space. For instance, starting from the kinematics, the relative velocity V' at the contact point of the
two bodies that come in touch in the physical space is related to the generalized velocities through a general linear

mapping
V=Dg. (24)

The column vectors V' =V“n, and g = qu e, with a=1,2,3 and I'=1,...,n, are expressed with respect to the
bases {n, n, n,} and {e, ... e, } in the tangent space of the physical and the configuration manifold,
respectively. This implies that the dual mapping between the corresponding momenta (covectors) is expressed by
p =bD, (25)

where p” and P are row vectors in the cotangent space of the configuration manifold and the physical space.
If y“=y"(¢") are the coordinates of a point in the physical space with respect to that special coordinate
system, the differential of the boundary defining function in the configuration space can be evaluated from



a’pza—pza—pD = dp=dpD, (26)
% 9
with p=p(x(q)) and D=3y / dq . Consequently, if {n' n’ n’} is a special basis of the cotangent physical
space, selected so that the representative of the base covector 7', as defined by Eq. (2), is normal to the local plane
of contact, Eq. (26) in conjunction with Eq. (25), yields

2

e=nD. 27)

1

Based on this, a new basis 8., = {e "'} is constructed in the cotangent space T, ; X , defined by

1" "
. " n D, 1"=1,23
?1 :AII' €1 =\ or s "
o,e, I"=4,...,n
Consequently, in order to create a basis for the x-coordinate system, a partial Gram-Schmidt orthogonalization
scheme is applied in the form

(28)

e'=e"—yle for I=1"=l,..n and J=12,3, (29)
with
(e',e’y=0 for TorJ=1,23and I+J.
In this way, combination of Egs (28) and (29) yields the first three basis vectors in the form
g‘/ = 1~7'/D for J=1,273,
with

1 1 2 2" 1 3 3 3" 2 3" 2" 3" 1
n=n, p=n-yn ==y +0Ly -nn.

2

Next, the components of the generalized force in the configuration space is evaluated in the form
L=F+7'E+WE, L=FE+pF and f,=F. (30)

The relation between the normal component F, and the two tangential components F, and F; of the contact
force F is established through an appropriate constitutive law, describing the friction action. For instance, the
Amontons-Coulomb law is the most frequently adopted law for calculations in the physical space [2-6]. Moreover,
assuming isotropic friction for convenience, it turns out that the admissible domain for the force covector is
described by a cone C in the physical space, defined by the relation

I Fyn* + Fon’ = F +F <plF |,

where 4 is a constant, known as the friction coefficient of the bodies in contact. In particular, the strict inequality
holds in case of sticking at the point of contact, while the equality represents a sliding condition. Then, due to the
linearity of the mapping expressed by Eq. (25), it can be shown that the friction cone C is transformed into
another cone K within the corresponding three dimensional subspace of the cotangent space in the configuration
space, with origin at point p . Also, the image of a basis of cone C , which is normal to the axis 7', remains plane
in the configuration space and parallel to the plane defined by the axes ¢* and e , as shown in Fig. 2. However,
it is not perpendicular to the axis glﬂ , which is normal to the boundary in the configuration space. Also, a cross-
section of C normal to n' is circular but becomes elliptic in the configuration space. It remains circular and
parallel to the boundary in the configuration space in special cases only, like in a central collision.

Based on the above, it becomes obvious that the presence of friction causes two important effects in the
formulation established so far in the configuration space. First, taking into account Eq. (30), it appears that the
forcing terms f, and f, should be comparable to f;, which means that they should all be of the same order,
O(l/ x'), so that the friction can cause tangible effects. Therefore, since the terms A[j .p,v and g, jv’ of Eq. (22)



remain O(1) even inside the boundary layer, the only possible way to balance the aforementioned forcing terms
is to assume that the terms p, and p,, representing a momentum change, vary rapidly, i.e., they are 0(1/ x")
within the boundary layer. This implies that the first two relations in Eq. (22) separate from the rest (i.e., those
with i =4,...,n) and appear in the form

pz_J}zzo and 1.73_f3:0’ (€29)

where the forcing terms ]}2 and ﬂ are determined by Eq. (30). Moreover, friction affects the amplitude of the
forcing in the normal direction. Specifically, the equation of motion along the normal direction to the manifold
boundary is expressed by Eq. (21), again, but now with ];1 given by Eq. (30), where F (', 7') appears in a form
similar to that in Eq. (23), with x' and %' replaced by y' and #', respectively, while F, and F, are determined
by the friction law employed.

nd :
P - '

Fig. 2: Friction cone in the physical space and its image in the corresponding three dimensional subspace of the cotangent
space in the configuration manifold.

Finally, if a holonomic set of coordinates is employed, represented by the quantity g = G - ¢")", Egs
(21) and (31) give rise to a set of equations of motion, which can be put in the matrix form
M(q)§+h(q,9.1)=0, (32)

even during the contact phase. This form is coincident with the second order ODE form obtained by classical
formulations for systems with no constraints. If non-holonomic coordinates are also involved, then the set of
equations of motion is expressed in terms of a set of quasi-velocities in place of ¢ [15].

5 Comparison with previous formulations

Depending on the treatment of the dynamics during the contact phase, all the previous formulations can be cast in
two general categories. In the first and bigger category, methods of non-smooth mechanics are applied (e.g., [2-
5]). Specifically, it is assumed that satisfaction of the unilateral constraint requires the generation of a constraint
force at the contact point and the equations of motion (32) are put in the form

M(q)u+h(q.u,t)=W(g)4, (33)

where the vectors u and # include the generalized velocities and accelerations, respectively. In addition, the
nx3 matrix W(q) and the vector A appear in the form

W(g)z[LVl w, w] and A=(4 4 /13)Ta



where the vectors w,, w, and w, define the normal and the two special tangential directions in the configuration
space specified by the mapping with the physical space, while the multipliers 4, A, and A, represent the
magnitude of the corresponding normal and tangential components of the contact force, respectively. The
magnitude of these multipliers is unknown and must be determined by imposing an appropriate impact law [2,3].
For this, the displacements g are assumed to be absolutely continuous functions of time, while the velocities u
are functions of locally bounded variation, with possible discontinuities at the impact times [1]. This permits
integration of Eq. (33) over a short contact time interval, where ¢/~ and ¢* is the time instance of the initiation and
end of contact, respectively. As a result, the impact equations of the system are put in the form

M ~u)=WA with A=lim [’ Adr, (34)
assuming no detectable change in the position, so that the mass matrix remains constant during the entire contact
phase. It is also assumed that the second term in the left hand side of Eq. (33) includes non-impulsive forces and
its contribution to Eq. (34) is negligible. Then, taking into account the contact kinematics of the system and
combining the last equation with an impact law, like Newton’s kinematic or Poisson’s kinetic impact law, leads
to determination of the post-impact velocity u* and the impulse A [3,4].

The new approach presents some original characteristics when compared to these formulations. First, the new
system of equations of motion (21) and (31) constitutes a set of ODEs even during the contact phase. This avoids
singular behavior associated with the numerical solution of sets of differential-algebraic equations (DAEs),
instead, like Eq. (33) [20]. Also, the whole trajectory is known during the contact phase and there is no need for
defining and employing restitution coefficients. However, the most important difference is that the present
formulation leads to elimination of the discontinuity in the velocities during the whole contact phase. This is
achieved by allowing a rapid increase in the value of the metric and the affinity component along the direction
normal to the boundary of the configuration space, which slows down the figurative particle inside the boundary
layer in a rapid fashion. At the same time, the forces developed are large but have a bounded magnitude, since the
figurative particle never reaches the boundary [12]. In fact, a strong repulsive force is applied on this particle, not
related to action of a stiff spring, pushing it away from the boundary.

The elimination of the non-smoothness effects is in accordance to some earlier studies, known as Darboux-
Keller approaches [7-10]. These studies investigate also motion of contacting bodies even during the impact phase
and lead to an ODE formulation. However, they use the normal impulse as a time-like independent variable,
instead. This makes necessary to still employ the idea of a restitution coefficient, in order to predict the end of the
contact phase [6]. More importantly, such an approach eliminates the short but finite time scale associated with
the contact duration from the equations. The new formulation uses time as the independent variable and, as a
consequence, it can handle impact of general bodies, including rigid and deformable bodies, in an effective way.
Namely, the duration of the contact phase provides a strong and safe basis for selecting the mode shapes of a
structure which have a significant participation in the impact dynamics. Finally, the whole spirit of the new
approach is based on different principles than those of the Darboux-Keller approaches, as explained at the end of
the previous paragraph.

In closing, it is worth noting that a combination of Eqgs (24) and (25) with Eq. (19) yields

V=EP", (35)
with
E=DG,'D". (36)
Moreover, using Eqgs (8) and (9) one can write
G=G+G,



where all the elements of matrix G are zero, except for the single element g,,, which is given by Eq. (10). Then,
based on Eq. (11), it is straightforward to show that

= .
G,=4G4=G,+G,,
with transformation matrix 4=[4,] and

Gq 2(41)741g11, (37)

with covector 4' =[4,]. In this respect, matrix 6q is a rank-one correction of G, . Therefore, application of the
Sherman-Morrison formula yields its inverse directly in the form

—~-1 -1
G'=G,'-

-1A ~-1 _ -1 -1
. —M,G;ll@,),g“ G, GG, =G +AG, .
Also, by employing the last result, it is easy to show that
E=E+D(AG,)\D" =E+E, (38)

with

E=E", E=E" and E=D(AG,)D'=E".
Replacing E by E in Eq. (35), furnishes an expression given in previous work [6,9], involving components of
the differential relative velocity and impulse at the contact point, instead.

6 Examples

In the first example, dynamics of a single particle colliding with a rigid wall is examined, while the second example
refers to impact between a rigid body and a half-space. Finally, deformability effects are considered in the last
example.

6.1 Collision of a particle with a rigid wall

A single particle with mass m hits a rigid wall. During free motion, its position is determined by three
Cartesian coordinates y', 7> and y’ in the physical space E°. If the ¢ -coordinates are identical to them, the
original configuration space is M =R’. Then, if these coordinates are selected so that the wall is at ' =0,

pl@)=q".

Based on Eq. (26), this implies that D =1,, where I, is the 3 x3 identity matrix, while Eq. (13) yields

4= 0 0)=p"
Also, the x -coordinate system can be chosen to coincide with the g -coordinate system. Therefore,

G=[g,]=ml, and Afj =0, (I,J,K=1,23).

Consequently,

Gq’1 =G '=m'l,, (39)
so that the metric matrices near the boundary are obtained in the following diagonal form

G= (_?q = diag(m + m(b/xl)2 m m)

Next, application of Eq. (29) leads to

10



o=y =y =0 (40)
and

2 3 3
=n" and W =n.

S
S
S

Finally, the components of the velocity in the physical space and the force in the configuration space are obtained
in the form

Vve=6'%"=%" and f,=F, (a=1,2,3), (41)
respectively.
The above information is sufficient to determine the action during the contact phase. First, the governing Eq.
(21), is put in the form
d 1
— % " ——1 le =0, (42)
dt| (x) ( ) x (x)

with
k, =kb* and ¢, =cb*/v .
Next, Egs (31) are put in the form
mv* = f,=0 and mv’ - f,=0. (43)

At this stage, Eq. (42) represents a nonlinear second order ODE in the coordinate x' of the particle, which is
decoupled from Eq. (43). In fact, for a given set of initial conditions

x'(0)=b and v'(0)=—v
an analytical solution of Eq. (42) has been found [12] and expressed in the form
X (6) =be” v (1) =v (e ~Tyakfc —1] a0 (44)
with
L&) = V[(k+c/a)g, (e = 1)+ ckt/v /e

Likewise, Eq. (43) represents two first order ODEs in the Velomty components v* and v’ . At every time instance,
the forcing terms f2 and f3 are first determined in terms of f1 , through application of the friction law. Using the
initial conditions

v (0)=v,;, and v3(0) =V,

this leads eventually to determination of v*(¢) and v’ (¢) during the whole contact phase

Next, a selected set of numerical results is presented. First, in Fig. 3a is shown the history of the normal force
/}1 exerted from the boundary to the particle. The results illustrate the effect of the boundary force parameter % ,
for ¢ =0. The time is normalized by the total duration of the contact phase, 7, . The results of Fig. 3a indicate that
the distribution of the normal force f1 is symmetric with respect to the line ¢ =¢ / 2. Also, this force reaches a
plateau around the middle of the contact phase for relatively small values of & . This symmetry is broken by the
presence of the boundary force dissipation parameter c¢ , as shown in Fig. 3b, for £ =10. In fact, a gradual increase
in the value of this parameter causes a reduction in the time interval where this force is impulsive.

Likewise, to demonstrate the effects of the friction coefficient x, in Fig. 4 is presented the history of the
tangential velocity of the particle for several values of ¢ and ¢ =0. Specifically, the results in Figs 4a and 4b
were obtained for £ =1 and k =10, respectively. In both cases, sufficiently small values of x lead to conditions
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of gross slip, while larger values lead to slip-stick. Moreover, an increase in k favors the development of gross
slip. A similar effect is also caused by increasing the magnitude of the dissipation parameter c .

(b)
0.9 1

4 _1 | | i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
t/ty I,/tf

Fig. 3: History of the boundary generated normal force }}1 on the particle: (a) effect of parameter k , for ¢ =0 ; (b) effect of

parameter c , for k=10.

1#=0.2
"""" u=0.4
——1=0.6
== u=0.8

|—u=1.0

k=10

| (b) | (a)
0 0.25 05 0.75 //fj 1 0 0.25 05 0.75 f/f/ 1

Fig. 4: History of the tangential velocity of the particle for several values of the friction coefficient x# and ¢=0:(a) k=1 and (b)
k=10.

6.2 Collision of a solid body with a rigid wall

In the second example, dynamics of a rigid body colliding with a plane rigid wall in the presence of friction
is studied, as shown in Fig. 5. In general, the configuration space of a free rigid body is represented by a six
dimensional product space M =R>x M (3) [19]. The position of the body with respect to an inertial Cartesian
reference frame F in the physical space E° is represented by a point on manifold M with generalized coordinates
q(t) split in two parts, ¢. and ¢, . The former specifies the position of the center of mass C of the body, while
the latter describes the orientation of the body in the physical space. Consequently, the velocity vector is also split
in the form v(¢)=(v. vy)", where v. =¢.(¢) and the rotational part is expressed in terms of quasi-coordinates
4, with

v =9=(Q @ @) and 9=T(g,)4y.

where T'(q,) 1s the tangent operator at g, [20]. Then, based on the kinetic energy of the body, the metric on
space M can be selected in the following block diagonal form
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ml, 0 }
; (45)

Gq:[gl’J’]=|: 0 Jc

where m is the mass and J,. is the mass moment of inertia matrix of the body with respect to an orthonormal
frame fixed in the body, with origin at its center of mass C. Moreover, the only non-zero affinities Afj are

T
A =—Ab = AS, =—AS, = AS, =A%, =1, (46)

Fig. 5: A rigid body hitting a rough half-space.

Next, consider a point P of the body, which at some instance comes in contact with a plane rigid wall I1. In
the physical space, this wall is defined by the function

s(= s, 2" =0, (47)

where y =(%' z* #’)" isthe position vector of a point on this plane with respect to F. This can be considered
as the boundary defining function in the physical space. In addition, the position vector of the contact point P with
respect to frame F is given by

Xp=Xc+R(qp)rp, (48)

where y. =g, and R isa 3x3 rotation matrix, fixing the orientation of the body with respect to F, while r, is
the position vector of point P with respect to the body frame [20]. Then, direct differentiation of Eq. (48) leads to

Vp=ve+ Rﬁp 5
with R = RQ and eventually, after a trivial manipulation, to Eq. (24) with transformation matrix
D=[I, —-R7]. (49)

The entities € and 7, represent 3x3 skew-symmetric matrices having O and r , as axial vectors, respectively
[19,20]. Moreover, the unilateral constraint for the contact event examined is expressed by

p(q)=5(2,)20, (50)

which yields the boundary defining function in the configuration space. Using the last expression, one can also
arrive at Eq. (49) in an alternative way, through application of Eq. (26). Specifically, based on their definition by
Eq. (13), the elements of the special covector
0 0 0
41 E[A},]z_pz(_p _'0)
oq 0q. 09

b
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can be evaluated and put in the form
A4'=sD,with s=(s, s, s;) (51)
and matrix D given by Eq. (49). In addition, using Eq. (45) leads eventually to
E=m"'I,-R#,J.'F,R", (52)
with matrix E =[e,,]. Then, application of Eq. (29), together with Eqs (27) and (28) yields
2 (e".¢e) _ (’ZZD)G:(’}ID)T _ nwEmn') e

— 21

") T WG WD dE@Y e
and
3 ONT
,oe . wE@m) e
yio =2t and y) =5 PL = 7,
€ n E(7Z ) en—y (e te)+ ()

6.2.1 Collision of a rigid spheroid with a half-space

First, consider a homogeneous rigid spheroid (i.e., an ellipsoid of revolution), with mass m and radii », r
and 7', aligned with the axes of a Cartesian coordinate system in the physical space when hitting a rigid wall, as
shown in Fig. 6a. The contact point P lies on the intersection of its circular equator with the y' -axis.

Fig. 6: (a) A spheroid and (b) a bar, hitting a rough half-space.

The set of results presented in Fig. 7a are hodographs obtained for £ =10, ¢ =0 and three values of the ratio
J/Js; » corresponding to an oblate spheroid, a sphere and a prolate spheroid. In all cases, the spheroid hits the
ground with an initial normal velocity ¥'(0)=—1 and zero angular velocity with respect to the wall. Also, the
initial components of the velocities in the plane of the wall are ¥*(0)=1 and V*(0)=1, as indicated by the
coordinates of point A. For relatively small values of x, the spheroid undergoes gross slip. For instance, points
B, C and D on the three hodographs examined indicate the end of the contact phase for #=0.1. Also, the
hodographs selected end up at point (0,0) for the limiting values £=0.18, 0.20 and 0.28, corresponding to J,, /J,
=8/5, 1 and 2/5, respectively. Then, a final stick state is reached for larger values of x. Clearly, the sliding
direction varies during the motion for the case of the oblate or prolate spheroid. In the case of a sphere, where
J/J5; =1, the hodograph is an isocline [8,9].

Finally, in Fig. 7b are presented the histories of the two tangential components of the velocity of the contact
point for J,,/J,; =2/5 and two characteristic values of x . First, results are shown for x=0.16, which is smaller
than the critical value leading to final stick. Clearly, this leads to conditions of gross slip. Similar results are also
presented for £=0.20, which is a bit larger than the critical value. The results verify that the contact event finishes
now with a stick phase.
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The case examined corresponds to a central collision. Then, like for the case of a particle, Eq. (30) leads to Eq.
(41), which shows that the force in the normal direction is not affected by the forces in the tangential directions,
leading to conditions of a balanced collision [8]. This implies that the dynamics of the central collision of a rigid
sphere with a half-space is in essence identical to the dynamics during collision of a particle with a plane, which
was investigated in subsection 6.1. For this reason, only a comparison between numerical and experimental results
is performed next, obtained by using data reported in an earlier work [21]. Specifically, in Fig. 8 are compared
results referring to the normal component of the force for two selected values of the initial incidence angle, defined
by

¢ =tan"'[-V*(0)/V(0)].
The numerical and experimental results presented for both the smaller value @ =20° (Fig. 8a) and the larger value

@ =060" (Fig. bb) are in close agreement.

12 1.2
8 LS
=~ —2
0.8 0.8 Ve, 1=0.16
=== 1 1=0.16
0.6 0.6 —iP, #=0.20
=== 1, =020
0.4- 04
0.2 02
0- E 0
b
%2 0 02 04 05 08 1 (61) 2 %2 0 02 04 06 08 1 ( :2
. : i j 8 3 . ¢ " ! ® iy .
Fig. 7: Collision of a spheroid with a plane: (a) hodographs starting at (¥, V> )=(1,1); (b) tangential velocity components of the
contact point for J,,/J,, =2/5 and x=0.16 or 0.20.
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Fig. 8: Comparison of numerical and experimental results for central oblique impact of a sphere. Normal force for: (a) ¢ =20° and
(b) p=060°.
6.2.2 Oblique collision of a rigid rod with a half-space

The last set of results refers to collision of a homogeneous rigid cylinder with mass m , length 2 ¢ and radius
r with a rough half-space, as shown in Fig. 6b. The longitudinal axis of the cylinder lies in the plane Oy'y* and
makes an angle @ with the axis Oy' . First, in Fig. 9a are presented hodographs, originating from the same point
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of the plane (V*,V?), for k=10, ¢ =0 and several values of x. The value of angle @ is selected to be equal to
1.10 rad, so that two critical friction parameter values are determined as z=0.7499 and .=0.5721 [6,9]. For
1< 1., conditions of gross slip are observed, while the shape of the hodographs demonstrate that the sliding
direction varies continuously during the motion. At the critical value x = u., the hodograph becomes an almost
straight line (isocline). In addition, following a temporary stick, the sliding direction changes but remains constant
and parallel to the y*-axis throughout the subsequent motion. For x < u, < i , the tangential velocity becomes
zero at some instance but continuous slipping immediately afterwards. Finally, for x> z, once the stick state
appears it persists until the end of the contact phase. Finally, in Fig. 9b are presented hodographs obtained for
three different values of parameter & . The results verify that as the value of k£ is increased gradually, leads to the
appearance of an isocline on plane (V>,17).

0.4 T 04
o 03 —wp, =0.0{
L [ 4
— G0 10=63.64°
0.2 B 2
..... W =02 //
- ettt =03 021
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Fig. 9: Hodographs for collision of a bar with a rough half-space, for different values of: (a) ¢ and (b) & .

6.2.3 Collision between rigid and flexible bodies

In closing, it is mentioned that the analysis developed is applicable to the most general single point collision,
involving any combination of mechanical bodies. The most essential information needed for this includes the
geometric properties of the configuration manifold and the transformation matrix D . For instance, when two rigid
bodies collide, the dimension of the configuration manifold increases to 12. Moreover, the corresponding metric
components and the affinities are selected in a way similar to that followed in Section 6.2. In addition,
consideration of the corresponding kinematics leads easily to

D=[I, —Ri, —I, R'i],

where the quantities R' and i, are associated with the second body.

Likewise, the same analysis can also be applied to configurations involving deformable bodies, obeying
general constitutive laws. As the simplest example in this category, consider a flexible body hitting a rigid half-
space. It is first assumed that the body has already been discretized geometrically, based on some appropriate
dynamic considerations, so that its flexibility effects are described in a sufficiently accurate manner by » elastic
modes. Then, the configuration manifold of the free body is represented by an ( n + 6 )-dimensional product space
M =R’ xM(3)xR" [11,19]. This means that the generalized coordinates g(¢) are now split in three parts, q,.,
qr and g, , so that the position vector of the contact point P with respect to frame F (see Fig. 6) is given by B

Xp=9qc Tt R(QR)(KP + (DQF) >

where @ is a 3xn matrix, furnishing the flexible part of the displacement [20]. Then, direct differentiation of the
last equation leads to Eq. (24), with

D=[I, -Ri, R®],
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while
up=r,+®q, and v()=(9. Q" ¢;)".

Again, the unilateral constraint for the contact event examined is expressed by Eq. (50). Finally, the metric G, on
space M can be selected by considering the total kinetic energy of the body, while the corresponding affinities
are also determined easily, based on the product form of the configuration manifold.

7 Synopsis and extensions

In the first part of this study, an analysis was presented on the dynamics of general single point frictional collision
between two mechanical bodies. This analysis was performed within the framework of analytical dynamics, by
employing some key concepts of differential geometry. First, a boundary was constructed for the original
configuration manifold by using the condition of no impenetrability. Then, the essential geometric properties of
the constrained manifold were determined. This provided the foundation for applying Newton’s law of motion and
led to an elegant geometric picture. Specifically, the motion during the contact phase was found to be governed
by a set of three ODEs, when expressed in a special coordinate system in the close vicinity of the configuration
boundary, having one axis normal to the boundary and the remaining axes tangent to the boundary. The inertia of
the figurative particle representing the motion of the system was found to increase rapidly as it approaches the
boundary along this axis. At the same time, a strong repulsive force arises pushing this particle away from the
boundary. In addition, friction was found to activate action along two special tangential directions only, determined
by a mapping with the physical space. Finally, the equations of motion in the original coordinate system were
simply obtained by a proper projection of these three ODEs. In the second part, the study focused on investigating
several phenomena arising during frictional contact, by using selected examples.

The new formulation was developed in a systematic way, which provides a firm basis for attacking more
challenging problems, like those involving multiple contacts. For this, there already exists a sound theoretical
background, based on the theory of manifolds with corners [22,23]. In addition, the enhanced understanding
provided by the geometric interpretation of the collision phenomenon studied is expected to lead to development
of more accurate and efficient numerical techniques for determining the dynamics of the class of systems
examined. This is closely related to development and application of suitable contact detection methods and will
also help in developing more effective and robust optimization and control algorithms.
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