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ABSTRACT — Some new theoretical and numerical results are presented for a class of multibody 
systems subjected to equality motion constraints. The formulation is based on a new set of equations 
of motion, expressed as a system of second order ordinary differential equations. First, an 
appropriate set of penalty terms is introduced and these equations are put directly in an augmented 
Lagrangian form. Next, the position, velocity and momentum type quantities are assumed to be 
independent, leading to a three field set of equations. This set is then used as a basis for producing a 
new time integration scheme. The validity and efficiency of this scheme is verified by applying it to 
several example systems. 

1 Introduction 

Research on the dynamics of mechanical systems subject to motion constraints is a traditional and favorable topic 
among researchers with different backgrounds (e.g., [1-4]). ๠is is in part due to the fact that this area of  
Mechanics is still challenging and several theoretical aspects related to it remain unexplored and are amenable to 
improvement. Another driving factor is that a better understanding of the fundamentals in this area provides a 
stronger foundation and offers substantial help in the efforts to solve difficult engineering problems by deriving 
and employing new, more advanced, accurate and robust numerical techniques [3,5,6]. ๠is in turn leads to useful 
design gains in many areas, including mechanisms, robotics, machinery, biomechanics, automotive and aerospace 
structures. 

Typically, the equations of motion for this class of systems are derived and cast in the form of a set of 
differential-algebraic equations (DAEs) of high index. However, both the theoretical and the numerical treatment 
of DAEs is a delicate and difficult task [7]. For this reason, many attempts have been performed in the past in an 
effort to cure the problems related to a DAE modeling. Over the years, it has become apparent that many of the 
theoretical questions in the area of Analytical Dynamics can be answered in an illustrative and complete way by 
employing fundamental concepts of differential geometry [8,9]. Based on this observation, the main objective of 
this work is to use such concepts in order to provide a better theoretical foundation and to develop an appropriate 
numerical scheme for treating a class of constrained mechanical systems. 

๠e new approach assigns appropriate inertia, damping and stiffness properties to the constraints. As a result, 
the equations of motion are second order ordinary differential equations (ODEs) in both the generalized 
coordinates and the Lagrange multipliers, related to the constraint action [10,11]. ๠is, in turn, leads to elimination 
of the singularities associated with DAE or penalty formulations. As a consequence, there is no need to introduce 
artificial parameters for scaling and stabilization. In addition, the geometrical properties of the original manifold 
are kept unchanged by the additional constraints. ๠is preserves the properties of the special curves of the manifold 
employed in the numerical discretization and leads to major advantages compared to previous work in the field of 
computational Multibody Dynamics [3,6]. In the present work, these equations are first put in a convenient 



Augmented Lagrangian form by introducing appropriate penalty terms. Moreover, the position, velocity and 
momentum type quantities are assumed to be independent, forming a three field set of equations [12,13]. In 
particular, the weak velocities and the strong time derivatives of all the coordinates involved in the formulation 
are related through a new set of Lagrange multipliers, which represent momentum type variables. Next, the 
formulation developed is employed as a basis for producing a suitable time integration scheme for the class of 
systems examined. ๠e validity and efficiency of this scheme was tested and illustrated by applying it to a number 
of characteristic example mechanical systems. Among other things, the results obtained verify that the scheme 
developed passes successfully all the tests related to a special set of challenging benchmark problems, involving 
redundant constraints or singular configurations, chosen by the multibody dynamics community [14]. In addition, 
the same scheme was also applied successfully to a number of large scale industrial applications. 

๠e organization of this paper is as follows. First, the set of equations of motion governing the dynamics of 
an unconstrained discrete mechanical system is presented briefly in the following section. ๠en, similar equations 
arising in the presence of bilateral constraints are also presented in the third section. ๠ese equations are easily 
put in an Augmented Lagrangian form, by just adding suitable penalty terms. ๠is task is performed in the fourth 
section. Based on this form, a temporal discretization scheme was developed and numerical results were obtained 
for several mechanical examples. Some characteristic numerical results are presented in the fifth section. 

2 Application of Newton’s law to systems with no motion constraints 

๠is work examines a class of mechanical systems whose position is determined by a finite number of generalized 
coordinates 1( )nq q q  , at any time instance t  [1,9]. ๠e motion of such a system can be represented by the 
motion of a fictitious point, say p , along a curve ( )t   in an n -dimensional manifold M , the configuration 
space of the system. Moreover, the tangent vector v d d t  to this curve belongs to an n -dimensional vector 
space, the tangent space of the manifold at p , denoted by pT M  [4]. By construction, for any point p  of M , a 
smooth coordinate map   can be defined by ( )q p , acting from a neighborhood of p  on M  to the classical 
Euclidean space n . ๠en, by adopting the usual summation convention on repeated indices [9], each tangent 
vector at point p , representing a generalized velocity, can be expressed in the form 

 ( ) ( )i
iv t v t e , (1) 

where 1{ }e ne e B  is a basis for space pT M . Likewise, one can define the dual space to pT M , denoted by 

pT M , with elements known as covectors. In dynamics, a covector represents a generalized momentum. Also, the 
correspondence between a covector u


 and a vector u  is established through the dual product 

 ( ) , , pu w u w w T M     


, (2) 

where ,   denotes the inner product of vector space pT M  [8]. In this way, to each basis { }ie  (with 1, ,i n  ) 
of pT M , a dual basis { }ie


 can be established for pT M  by employing the condition ( )i i

j je e 


, where the last 
term is a Kronecker’s delta. ๠en, when the set of coordinates is minimal, determination of the true path of motion 
on a manifold is based on application of Newton’s second law in the form 

 * *
v M Mp f 
 

, (3) 

where v  is the tangent vector of the natural trajectory ( )t , while * i
M if f e


 represents the applied force [1,9]. 

๠en, if i
iv v e  and * i

M ip p e


, application of Eq. (2) leads to 

 j
i i jp g v ,  (4) 

where the quantities ,i j i jg e e    represent the components of the metric tensor at point p . ๠ese quantities are 
selected to coincide with the elements of the mass matrix of the system, defined through the kinetic energy. Finally, 
the covariant differential of the covector field *( )p t


 on M  along a vector v  of pT M  is evaluated by 



 *( ) ( )m j i
v i j i mp t p p v e  


. (5) 

where   is the affine connection of the manifold. ๠e components k
i j  of the connection   in the basis of pT M  

are known as affinities [9]. 
๠rough the definition of a class of special covectors (called Newton covectors, see [11]) by 

 * *
M v M Mh p f   
  

 (6) 

the equations of motion (3) at any point on the configuration manifold M  can be put in the form 

 * 0Mh 
 

. (7) 

๠erefore, when there exist no motion constraints, it should be true that 

 * ( ) 0Mh w  


2

1

* ( ) 0,
t

M pt
h w dt w T M   

 (8) 

along a natural trajectory on the manifold and within any time interval 1 2[ , ]t t . Manipulation of the last integral 
requires application of integration by parts of the covariant derivative appearing in Eq. (6). ๠is is achieved by 
employing the identity 

* * *( ( )) ( )( ) ( )v M v M M vp w p w p w    
  

, 

which can be interpreted as a Leibniz rule on differentiation. ๠en, the following expression is obtained 
2

1

* * *[ ( ( )) ( ) ( )] 0
t

v M M v Mt
p w p w f w dt       

, 

which, after an integration by parts of the first term inside the integral, becomes 

 
2 2

11

* * *[ ( )] [ ( ) ( )] 0
t t

M M v Mtt
p w p w f w dt     

. (9) 

๠is equation represents the so called weak form of the equations of motion [15]. In essence, it constitutes an 
alternative way to determine the true history of the coordinates (i.e., position) and velocities of a mechanical 
system satisfying the law of motion, as expressed by Eq. (3) originally. 

Further manipulation of the weak form given by Eq. (9) involves differentiation along the vectors v  and w . 
๠is requires the construction of two smooth vector fields on M . ๠e first of these can be constructed by 
considering the tangent vector v  at each point of the natural trajectory ( )t . ๠e second vector field can then be 
created by introducing another vector w  of the tangent space at each point of the same trajectory, which can be 
arbitrary. ๠erefore, a variation of any scalar function f  is defined as the derivative of f  along vector w , by 

,( ) i
if w f f w   . 

๠en, i iw q  for holonomic coordinates. Finally, after defining the objective function 

 
2*1

2M Mh


F , (10) 

it is straightforward to show that 

 * ( ) 0,M M ph w w T M    


F , 

which leads to Eq. (8). 

3 Application of Newton’s law to systems with bilateral constraints 

Next, consider a mechanical system subject to a set of k  scleronomic constraints, which can be put in the form 

 ( , ) ( ) 0q v A q v   , (11) 



where v  is a vector in the tangent space pT M  and [ ]R
iA a  is a known k n  matrix. In the special case where a 

constraint is holonomic, its equation can be integrated and written in the algebraic form 

 ( ) 0R q  . (12) 

Based on the above, it was shown in an earlier study that the equations of motion of the class of systems examined 
can now be cast in the form 

 * * * 0M Ch h h  
   

 (13) 

on the original manifold M [11], with 

 * [( ) ]i j m j i
M i i j i m j ih h e g v g v v f e     

  
   and   *

1

k R i
C R iR

h h a e


 
 , (14) 

where 

 ( )R R R
R RR RR RR Rh m c k f       . (15) 

In the last relation and in the sequel, the convention on repeated indices does not apply to index R . Moreover, the 
coefficients 

 i j
RR R i j Rm c g c ,   ( , , )ii j

RR R Rj

f
c c q v t c

v


 


,   ( , , )ii j

RR R Rj

f
k c q v t c

q


 


   and   ( , , )i

R R if c f q v t , (16) 

represent an equivalent mass, damping, stiffness and forcing quantity, respectively, obtained through a projection 
along a special direction Rc  on pT M  [11]. Specifically, the components of the n -vector Rc  are selected to satisfy 

 1R i
i Ra c  . (17) 

To compare with existing formulations, matrix notation is employed next, with 

1( )n Tq q q  ,   1( )k T    ,   [ ]i jM g    and   1( ) ( )T
nf t f f  . 

๠en, Eq. (13) can be put in the general form 

     ( ( ) ) ( , ) ( ) ( )[( ) ]TM q q h q q f t A q M C K f           ,      (18) 

where the term ( , )h q q  arises in the presence of nonzero affinities on the original manifold M  and includes the 
classical quadratic velocity terms [5], while the elements of the diagonal matrices 

11( )kkM diag m m  ,   11( )kkC diag c c     and   11( )kkK diag k k   

and array f are determined by Eq. (16). The major difference with the classical approaches lies in the last term 
of Eq. (18), representing the constraint forces. Specifically, in all current analytical formulations, only the “static” 
term TA   appears in its place, so that the equations of motion are cast in the form 

( ) ( , , ) ( )TM q q g q q t A q    , 

with 

( , , ) ( ) ( , , ) ( )g q q t f t h q q t M q q      . 

Equation (18) represents a set of n  second order coupled ODEs in the n k  unknowns iq  and R . ๠e cases 
involving quasi-coordinates are also covered by the same equations [15,16]. Moreover, the additional information 
needed for a complete mathematical formulation is obtained by incorporating the k  equations of the constraints, 
which are expressed originally by Eq. (11). In particular, for each holonomic or non-holonomic constraint, a 
second order ODE is obtained, with form 

 ( ) 0R R R
R RR RR RRg m c k          οr   ( ) 0R R

R RR RRg m c     , (19) 



respectively, for 1, ,R k  . ๠ese conditions have a similar but more general form than those employed in the 
so-called Baumgarte stabilization [3,6]. In addition, these equations were derived as part of a systematic approach 
and were not introduced artificially. Also, all the coefficients of these equations were determined analytically and 
not selected through an adhoc selection. 

The present approach brings a major theoretical advantage when compared to other approaches applied so far 
in the field of Analytical Dynamics and Multibody Dynamics in particular [11]. This is related to a physically 
consistent and correct elimination of the singularities associated with the sets of DAEs of motion. Specifically, 
the introduction of the Lagrange multipliers associated to the motion constraints is based on a dynamic treatment 
of the constraint equations, which is consistent with that of the main equations of motion. As a result, the 
derivatives of the Lagrange multipliers appear naturally in these equations and there is no reason for performing 
extra differentiations of the constraint equations. In addition, there is no need for an arbitrary and externally 
imposed numerical stabilization. Furthermore, all the constraints are introduced automatically and possess a 
proper numerical scaling, in contrast to current penalty formulations, which are based on an adhoc introduction of 
terms and selection of parameters [3,6]. 

4 A new numerical scheme for systems with bilateral constraints 

In analogy to Eq. (10) and taking into account the motion constraints expressed by Eq. (11) or Eq. (19), 
alternatively, define next the function MF  gives its place to 

 
2 2* *1 1

2 2A h h 
 

F .  (20) 

๠e new function is augmented by the norm of the covector 

 *

1
( )

k R i
R R iR

h g a e 


 
, (21)  

including the penalty factors R . ๠en, it is easy to show that the above definitions lead to 

 * *( )( ) 0,A ph h w w T M     
 

F , 

which is equivalent to minimizing the function 
2*h


, where the quantity *h


 is defined through Eq. (13), subject 

to the motion constraints defined by Eq. (19). Eventually, this leads to 

 
2 2

1 1

* * *( )( ) ( ) 0,
t t

M C pt t
h h w dt h w dt w T M       

. (22) 

Τhe last form, known as a weak form of the equations of motion, is also complemented by the following terms 

 
2

1

0
t R

Rt
g dt  ,  (23) 

for each motion constraint and arbitrary multipliers R . 
In a weak formulation, it is frequently advantageous to consider the position, velocity and momentum 

variables as independent quantities [15]. For this, a new velocity field v̂  is introduced on manifold M , which 
should eventually be forced to become identical to the true velocity field v  through the action of an arbitrary 
covector with components ˆ ip . A similar action can be taken for the velocity type components R R   , by 
introducing another vector field with components ˆ R  and a new set of multipliers, ˆR , with 1, ,R k  . 
Likewise, one can relate the variations in the strong time derivatives iv  and R  of the position type variables to 
those of the weak velocities, ˆiv  and ˆ R , through two new sets of Lagrange multipliers, denoted by ˆ ip  and ˆR , 
respectively. To achieve these tasks, the weak form expressed by Eqs (22) and (23) should be augmented by the 
terms 

 
2

1

ˆ ˆ ˆ ˆ[ ( ) ( )] 0
t i i i i

i it
p v v p v v dt         and   

2

1

ˆ ˆ ˆ ˆ[ ( ) ( )] 0
t R R R R

R Rt
dt         . (24) 



Finally, by adding up all these terms and performing appropriate mathematical operations, including the usual 
integration by parts step, it yields eventually the following three field set of equations 

 
2 2 2

11 1
1 1 1

ˆ ˆ ˆ ˆ( ) [ ( ) ( )]
t t tk k kR R i R R i i R R

i i RR RR i RR R Rtt t
p a m w m p v v dt      

  
         

         
2 2

1 1
1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ[( ) ( ) ] ( )
t tk k kR R i R R i R

i i RR i R RR i RR R Rt t
p a m p v m dt p v dt       

  
             (25) 

             
2 2

1 1
1 1

{ [( ) ]} ( ) 0,
R
i

t tk kDaR R R R i R R R
i RR RR R i RR RR RRDtR Rt t

f c k f a m w dt c k dt     
 

            

where the variations iw , R , ˆiv , ˆ R , ˆ ip  and ˆR  are independent for all 1, ,i n   and 1, ,R k  , while 

ˆ
R
iDa R R j

i jiDt a a v 
 ,   ˆR R R

R         and   ˆR R R
R     .      (26) 

Equation (25) is the final weak form obtained for the class of constrained mechanical systems examined. ๠is 
form is convenient for performing an appropriate numerical discretization of the equations of motion, leading to 
improvements over existing numerical schemes based on advanced analytical tools. For the purposes of the present 
work, this form was also put within the framework of an augmented Lagrangian formulation [17-21]. ๠is method 
is appropriate for performing a geometrically exact discretization. 

In brief, after assuming consistent polynomial expansions, a set of nonlinear algebraic equations is obtained 
for the unknowns of the problem, which consist of iq , R , ˆiv , ˆ R , ˆ ip  and ˆR . ๠is set is solved by a block-type 
iterative technique within each time step, according to the following scheme. First, assume that the values of all 
the unknowns but ˆiv  are fixed. After solving for the new values of the velocities ˆiv  the subsystem of the algebraic 
equations resulting by the terms in the weak form multiplied by iq  (for holonomic coordinates) and R , an 
appropriate augmentation is performed leading to the new values of ˆ R , based on Eq. (26). ๠en, the values of 
the coordinate variables iq  and R  are determined through a direct update, resulting by the terms of the weak 
form multiplied by ˆ ip  and ˆR . Finally, the updated values of the momentum variables ˆ ip  and ˆR  can be 
obtained by using the subsystem resulting by the terms of the weak form multiplied by ˆiv  and ˆ R . 

5 Numerical results 

๠e numerical scheme developed leads to a full exploration of the major advantages of the theoretical method 
applied, in a quite natural manner. It is especially useful when the configuration space of the system possesses 
group properties [22,23]. ๠e success of this formulation was demonstrated by the accurate solution obtained for 
a number of challenging problems. Some characteristic results are presented next for several typical examples. 
๠e first ones have a relatively simple geometry and are of academic interest, while the last example was taken 
from an industrial application. 

5.1 Plane Pendulum 

๠e first set of numerical results refers to a planar pendulum, composed of a particle with mass 1m kg , 
attached to one end of a massless rigid rod with length 1L m . ๠e other end of the rod is connected to the ground 
through a revolute joint so that the system motion is confined to take place in the x-y plane. ๠is pendulum is 
released from rest, from an initial position, shown in Fig. 1a. Consequently, it undergoes large amplitude 
oscillations, due to the action of gravity along the negative Y direction. 

In Figs 1b-1d are presented and compared numerical results obtained by the new solver (labeled by LMD) 
with results obtained from a state of the art code, employing a solver based on backward differentiation formulas 
(BDF) [24]. In both cases, an effort was made to keep the same time step and accuracy level in the numerical 
calculations. In particular, an accuracy level of 0.01 was required in all runs, using either code. 

First, in Fig. 1b is shown the mechanical energy of the system as a function of time, assuming a zero potential 
energy at the position shown in Fig. 1a. Clearly, the results obtained by the commercial code exhibit a gradual and 
substantial mechanical energy loss. ๠is is probably related to the high level of artificial damping induced in the 



BDF scheme employed. ๠e consequences of this effect are demonstrated in Figs 1c and 1d, presenting the time 
history of the vertical component of the displacement of the particle at the beginning and at a later time interval 
of the oscillation. ๠e results indicate a drift and a reduction in the amplitude of oscillation obtained by the BDF 
method. It is important to note that a similar behavior with [24] was also observed by employing another state of 
the art code in multibody dynamics, which uses also a BDF scheme [25].  

 

 

  

Fig. 1: Numerical results for a planar pendulum: (a) mechanical model, (b) mechanical energy error, (c)/(d) history of the particle vertical 

displacement at the beginning and at a later period of time. 

๠e good performance of the new code is due to the fact that the new set of equations of motion employed 
includes suitable terms, avoiding a growth in the constraint violation error in an automatic manner. For instance, 
in Fig. 2a are shown results obtained by the new code, by taking into account the critical term RRm , evaluated by 
Eq. (16), or setting it to a different value in the calculations, i.e., 10RRm , 100RRm  or 0. As it is obvious from 
Eqs (14) and (15), this term assures the presence of the constraint inertia term R  in the equations of motion. 
Obviously, an incorrect choice or elimination of this term leads to a dramatic reduction of the time step, causing 
a sudden termination of the numerical calculations. In all cases, the initial penalty values were chosen to be equal 
to 100. In Fig. 2b are shown the changes in the values of the penalty factors leading to convergence in the case 
with 10RRm . Obviously, the penalty factors change with time and are different for each constraint. For the correct 
value of RRm , the step size was found to remain constant in all cases examined for the specific example, as shown 
in Fig. 2c. Likewise, the penalty values remained also constant, as is shown in Fig. 2d, while the violation of the 
constraint was limited to very low levels, as indicated by the results of Fig. 2e. Finally, Fig. 2f shows results for 
three cases, corresponding to 10RRm , where the penalty factors are kept constant throughout the simulations. For 
the larger penalty value the correct solution is obtained without a reduction in the time step. For the intermediate 
penalty value a solution is reached, after an order of magnitude reduction of the time step. ๠e smallest penalty 
value leads to a drastic reduction of the time step and termination of the solution process. ๠ese results are expected 
to worsen in more complicated examples, where the values of the RRm  are not constant. 
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Fig. 2: Numerical results for a planar pendulum: (a) time step as a function of time for different fraction values of RRm  (all initial penalty 

values are equal to 100), (b) changes in the values of the penalty factors leading to convergence in case with 10RRm , (c) step size for 

the correct value of RRm , (d) penalty values for the correct value of RRm , (e) violation of the constraint for the correct value of RRm , (f) 

step size for constant penalty factors and 10RRm . 

5.2 Double Four Bar Mechanism 

Next, in Fig. 3 are compared results obtained by applying the new method with similar results obtained for a 
typical benchmark problem [14]. In brief, the double four bar mechanism examined is a representative of a 
multibody system passing through a singular configuration. All the rods have equal length and uniformly 
distributed mass. Specifically, when the bars reach the horizontal position, the number of degrees of freedom 
increases instantaneously from one to three. In the set of calculations presented next, the mechanism starts from 
rest from the position shown in Fig. 3a and executes oscillations due to the action of gravity along the –y direction. 
Again, the results of the new method are labeled by LMD.  

First, the results of Fig. 3b verify the closeness of the results obtained by the two methods, within the time 
interval considered. However, the results presented in Fig. 3c demonstrate a difference in the error in the 
mechanical energy (taking as a reference configuration the one shown in Fig. 3a). ๠e new method predicts a 
constant value close to zero, which is the exact value. In addition, the results shown in Figs 3d, 3e and 3f show 
three different types of failure in the response obtained by using the same BDF solver as in the previous example 
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[24]. More specifically, the simulation stops suddenly (Fig. 3d), the solver finds a wrong solution (Fig. 3e) or it 
predicts a breaking of the connections leading to a disassembling of its members (Fig. 3f), as the mechanism 
passes from the singular position. 

  

  

  
  

  

Fig. 3: Numerical results for a double four bar mechanism: (a) mechanical model, (b) history of position and velocity of point 1P  of the 

mechanism, (c) mechanical energy error, ADAMS results (using a BDF method) where (d) simulation stops, (e) solver finds a wrong 

solution and (f) the mechanism breaks. 

5.3 Rectangular Bricard Mechanism 

๠e next set of results refers to a six-bar rectangular Bricard mechanism, shown in Fig. 4a. All the rods are 
connected with revolute joints, have equal length and uniformly distributed mass. Again, this system moves due 
to gravity acting along the negative y -axis. ๠e mechanism examined represents a mechanical system which is 
redundantly constrained throughout its motion and, due to this property, it also belongs to a special set of 
benchmark problems [14]. 

First, in Fig. 4b are shown the time histories of the x , y  and z  coordinates of point 2P , while in Fig. 4c is 
depicted the mechanical energy of the system. Finally, in Figs 4d and 4e are presented the corresponding histories 
of the constraint violations in the position and velocity levels during the same time interval, represented by the 
norm of the array of the constraints at each level. 

Direct comparison of the results in Fig. 4 illustrates that the present method is accurate and passes 
successfully the benchmark tests. It also presents an improved numerical performance. For instance, the 
mechanical energy computed by the present method remains virtually constant (Fig. 4c). In addition, the errors 
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in both the displacement and velocity constraint violations are bounded and stay at the same level, throughout 
the time interval examined (Figs 4d and 4e). 

 
 

  
  

  

Fig. 4: (a) Mechanical model of a Bricard mechanism, (b) history of the x , y  and z  coordinates of point 2P , (c) mechanical energy, 

(d) violation of position and (e) violation of velocity constraints. 

5.4 Flyball Governor 

๠e next example is a flyball governor, shown in Fig. 4a. Here, the coupler rods have been replaced by spring-
damper elements with stiffness and damping coefficients equal to k = 8·105 N/m and c = 4·104 Ns/m, respectively. 
๠is produces a stiff system and is included in a special set of benchmark problems [14]. At time t = 0, both arms 
form an angle β = 30º with respect to the x-axis and the shaft rotates about its axis with an angular velocity ω = 
2π rad/s. Subsequently, the system moves under a gravitational force along the negative z axis. 

First, in Figs 5b and 5c are compared results of the new method with a benchmark solution for the history of 
the angular velocity and the distance s, respectively. ๠e results indicate a good level of agreement. Finally, in 
Figs 5d and 5e are shown results for the numerical violation observed in the position and velocity constraint, 
respectively. Clearly, the level of both of these errors is quite low and is controlled by the new methodology 
developed in an automatic way. 
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Fig. 5: Numerical results for a flyball governor: (a) mechanical model, (b) history of the angular velocity of shaft, (c) distance S, (d)/(e) 

violation of constraints in position and velocity field, respectively 

5.5 Rolling Sphere on a Turntable 

๠e system examined next consists of a sphere rolling over a turntable, as shown in Fig. 6a. ๠e special feature 
of this problem is that it belongs to the class of systems subject to rheonomic constraints. ๠is problem has a long 
history. For instance, even analytical solutions are available for horizontal and tilted turntables, under pure rolling 
conditions [26]. Here, a steel ball with a radius of 2,5R cm  is considered, moving on a horizontal rotating disk. 
๠e ball starts at the center of the turntable with a small initial velocity  0 0.5 0.5 0 /

T
v m s 


 and rolls 
without sliding, while the disk rotates with a constant angular velocity 2 / sZ rad   along the vertical axis Z. 
In Fig. 6b is presented the trajectory obtained for the ball by applying the existing analytical results and the new 
method developed. As expected by the choice of parameters, the path is circular, while the speed remains constant 
throughout the whole trajectory. 
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Fig. 6: Numerical results for the rolling ball model: (a) mechanical model and (b) orbit of the ball. 

5.6 Complex Model of a Ground Vehicle 

In the last example, a quite complex model of a ground vehicle is examined, shown in Fig. 7a. ๠is model is 
composed of a basic powertrain system, a complex steering system, together with involved front and rear 
suspension systems with jounce and rebound bumpers. Also, the tires were modeled using the well-known Pacejka 
tire model [27]. In total, the model consists of 53 rigid bodies, interconnected with 49 kinematical constraints, 29 
bushings, 9 spring-damper systems and 9 action-reaction force elements. As a consequence, the total number of 
degrees of freedom of the final model is 134. In the examples examined, the vehicle is subjected to two classical 
road handling tests. For this, an appropriate driving torque and steering angle is applied at the car’s differential 
and wheel during the motion, as shown in Figs 7b and 7c. In the first test, the vehicle is running over a straight 
path with a constant longitudinal velocity 60 /XV km h   before it starts performing a typical double lane change 
(DLC). In Figs 7d and 7f are presented selected results obtained for tire forces and velocity components by 
applying the new numerical method (labeled by LMD). Moreover, these results are compared with results obtained 
for the same model by two state of the art numerical codes [24,25]. ๠ese codes set up the equations of motion 
and solve them numerically as a system of DAEs. In the second test, a swept steering maneuver is performed. 
Typical results for tire forces and velocity components are shown and compared in Figs 7e and 7g. ๠e differences 
appearing between the results obtained by the new method and one of the codes [25] is most probably due to 
differences in the tire models employed. 

 

 



  
  

  
  

  

Fig. 7: Numerical results for a car model: (a) vehicle model, (b)/(c) driving torque and steering angle input curves, (d)/(f) front right tire 

lateral force and vehicle lateral velocity for the DLC analysis, (e)/(g) front right tire lateral force and vehicle lateral velocity for the swept 

test analysis. 
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