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Abstract — This paper proposes a formation control scheme for transporting a plate using
mobile robots through an unknown environment while only making use of friction and normal
forces between the plate and the robots. The scheme includes the calculation of the normal
forces by solving a linear complementarity problem, and the formation control of the swarm
of robots while they keep the plate stable. To this end, possible stability conditions of the
transportation mechanism are investigated and used to formulate an optimization problem de-
scribing the control task. The approach makes use of a repeated Voronoi decomposition. The
robots are controlled distributedly using augmented Lagrangian particle swarm optimization to
solve the formulated optimization problem which makes it possible to enforce constraints on the
movements of the robots to allow for a successful transportation of the plate. The proposed
scheme is extensively tested in various simulations and the results show that the transportation
mechanism works successfully.

1 Introduction

In recent years, autonomous agents, including mobile robots, have increasingly come into the focus
of academic and industrial users, e.g., investigating formation control of mobile robots that maneuver
through an unknown environment while avoiding obstacles [1, 2]. When simple individual robots gather
together, their application is enlarged, e.g., for the cooperative search of an unknown environment by a
swarm [3] or for transporting a load [4].

Cooperative transportation of a load is an interesting application of swarm robotics in the sense that a
swarm creates a formation around an object and tries to transport it to the desired position. This usually
is done by prehensile or non-prehensile approaches. In prehensile approaches, the robots and the load are
rigidly connected and object manipulation and motion control of mobile robots are investigated [4, 5].
In [4], the mobile robots are physically connected to an object by their grippers and transport it by a
leader-follower system. In non-prehensile approaches, the load is carried by pushing or rolling without a
rigid connection to the object [6, 7].

Instead of the mentioned methods, we propose a new approach where a formation of omnidirectional
mobile robots transports an elastic plate purely by friction and normal forces between the plate and the
robots [8, 9, 10]. The elastic plate is carried by pins that are attached to the top of the robots. Instead
of closure forces to grasp the plate or pushing forces, the absence of a rigid connection gives the robots
the ability to move and stick or slip under the plate. Therefore, they can change the respective force
direction and position while they keep the stability of the plate. However, if more than three robots are
under the plate, the system is overdetermined. In addition, the displacement constraints at the contact
points are unilateral and thus, to calculate the normal forces, a linear complementarity approach is used.

The formation control problem is another aspect of this research that shall be taken into account. To
deal with this issue, various approaches can be considered such as leader-follower approaches [11, 12], ar-
tificial potential fields [13], behavioural and virtual structures [14, 15], graph theory [2, 16] and consensus-
based approaches [17]. So far, we have investigated three approaches for controlling the formation and



path planning to transport an elastic plate by this mechanism. In [8], an improved artificial potential
field method (APF) is utilized for path planning and formation control of the mobile robots by con-
structing a potential field with local maxima at the positions of obstacles and a global minimum at the
goal position. Therefore, the robots are effectively subjected to a virtual force field with an attractive
force generated by the goal and repulsive forces generated by the obstacles. Although APF is a simple
approach to be implemented on hardware, it has inherent, difficult to solve, drawbacks, e.g. local minima
that the robots may get stuck in. Therefore, APF cannot be utilized for many difficult environments like
maze-like environments.

Other approaches are based on distributed model predictive control [9, 10]. The scheme includes a
graph-based path planning strategy that does not rely on discretization of the environment, with the
obstacles having any desired polygonal shape. The strategy permits the robots to construct a map of the
environment during the motion and thus, they can successfully navigate through maze-like environments
using a memory functionality. A distributed model predictive controller finds the control inputs for the
swarm while satisfying constraints to limit the slipping between the load and the robots. Hence, at first a
sequential distributed model predictive control (SDMPC) for transporting the plate was proposed in [9].
Then, the simulation and experimental results of SDMPC were compared with an approach based on
iterative distributed model predictive control (IDMPC) [10].

These three approaches aim to keep the formation’s center and the center of the plate as closely
together as possible. Therefore, the formation shape and the movements of the robots are limited to
specific shapes. Also, the stability of the plate is not explicitly considered in the control schemes. However,
by using this type of manipulation mechanism, relative movements of the robots and highly dynamic
driving maneuvers will sometimes lead to a sliding plate, resulting in a displacement between the formation
center and the center of the plate. In the worst case, this may lead to an instability of the system, where
the plate falls off the robots.

Considering this, the novel contribution investigates the stability of the plate. To this end, the possible
stability conditions of the transportation mechanism are analyzed. Based on this, a new formation of
the mobile robots using a Voronoi decomposition is calculated. Hence, there is no need to predefine the
formation shape, and it can be applied to many scenarios. Also, to enforce constraints on the movements of
the mobile robots, each robot is controlled using a distributed controller based on augmented Lagrangian
particle swarm optimization (ALPSO) [18], with the aim to guarantee the stability of the transportation
mechanism.

The presented paper is organized as follows. Section 2 discusses the system modelling and the for-
mulation of the plate transportation mechanism. This includes the models of the robots and the elastic
plate, as well as the friction and normal forces. Thereafter, Section 3 deals with a brief summery of
the utilized path planning scheme. The details of the implemental formation control method and the
proposed control algorithm are explained in Section 4. Finally, various demanding scenarios are carefully
simulated using the proposed scheme in Section 5 and the results are discussed.

2 System Modelling

The setup is shown in Figure 1, with the right-hand side showing. The figure shows that four robots are
moving in the x-y-plane and the plate is carried above the robots and is in contact with the small pins
attached to the top of the robots. In this research, the Robotino, which is manufactured by Festo [19], is
used. It is a holonomic omnidirectional robot, therefore all its constraints are integrable and it can move
freely in any direction of the plane. The modelling follows [8, 9] with the information essential for the
needs of this paper summited subsequently. Considering the friction caused by the mechanical parts of
the drive train, a Robotino is modelled as a point mass

Mq̈i + Dq̇i = ui, (1)
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contact point

Fig. 1: Experimental setup.

where qi ∈ R2 is the position of a mobile robot in the inertial frame of reference and the diagonal
matrices M ∈ R2×2 and D ∈ R2×2 are the mass and damping matrices, respectively. The model with
the system states x = [q q̇]T is represented in the state space form as

ẋi =

[
0 E
0 −M−1D

]
xi +

[
0

M−1

]
ui := Axi + Bui. (2)

Here, E is the identity matrix and the propulsion forces in the two coordinate directions form the control
input ui ∈ R2. The plate is assumed to be a cuboid of uniformly distributed mass with six degrees of
freedom. The plate’s equation of motion has the form

Mp(y)ÿ + kp(y, ẏ) = qp(y) (3)

where the applied forces, the force of gravity in the negative z-direction, the normal and friction forces
at the contact points, and their generated moments are considered in qp.

The contact area between each pin and the plate is modelled as a point contact with Coulomb friction.
The friction force FF ∈ R3 is modelled in the form

FF(vslip) = FN γ1 tanh(γ2 |vslip|) vslip/|vslip| (4)

with FF(0) := 0, see [20]. The normal force acting on the plate is represented by FN and vslip ∈ R3 is
the slip velocity between the respective pin and the contact point on the plate. While γ1 is a material-
dependent parameter, γ2 is a design parameter modifying the function’s sigmoid shape.

Since the displacement constraints at the contact points are unilateral, the calculation of the normal
forces is non-trivial. Hence, the normal force at the contact point shall be calculated to obtain the overall
model of the system. When more than three robots are under the plate in a general configuration, the
problem is overdetermined. To find the solution, the plate is discretized using the finite element method
with linear, quadrilateral Reissner-Mindlin plate elements with four nodes. The common approach of
the direct stiffness method simply sets the displacements of the contact nodes to be zero. This leads to
incorrect results, since unphysical pulling normal forces in the negative z-direction can occur. This is
demonstrated in a simulation result in Figure 2(a).

To ensure that only positive normal forces occur in the z-direction on the plate, the equations are
reformulated as a linear complementarity problem (LCP). When a robot looses the contact to the plate,
the respective normal force would be zero. The detailed formulation of an appropriate LCP problem to
find the normal forces can be found in [8]. The simulation of an elastic plate supported by six mobile
robots is shown in Figure 2. The blue-colored circle signifies a negative value of the corresponding normal
force, belonging to an incorrect solution obtained with the direct stiffness method. The yellow-colored
circle indicates that the respective mobile robot has no contact with the plate, while the red-colored
circles represent the normal forces in the positive z-direction. Figure 2(b) obtained by solving LCP shows
the plate lifts-off correctly.

3



unphysical pulling force

(a) Results of the direct stiffness method

correct lift-off

(b) Results using the LCP formulation

Fig. 2: Calculation of the normal forces by LCP and the direct stiffness method, from [8].

3 Path Planning

In this study, the path planning scheme from [9] is used, with a broad overview of the scheme given
below. Each robot has a sensor delivering distance readings within a limited distance to detect the
positions and shapes of surrounding obstacles. The robots sense their environment in each time step and
a map is generated using the sensor information. The generated map is used to plan a path from the
current position to the goal. This path can be planned for the formation’s center of mass or a specific
mobile robot. The respective path is not parametrized in time and thus, it is undefined at what time the
formation shall reach which point of the path.

In order to calculate the reference path of the formation’s leader, a graph is defined that includes
the shapes of obstacles. To this end, it is considered that the obstacles consist of convex polytopes.
Non-convex obstacles can be represented by multiple convex obstacles. The obstacles in the constructed
map are represented as the intersection of half-planes, i.e. by a finite set of linear inequalities.

As the first step in the path planning, a buffer zone around the obstacles shall be taken into account.
The buffer zone is the minimum distance that a mobile robot must keep away from the obstacles. Using
this, one can be sure about the feasibility of a path toward the goal. Enlarged versions of the obstacles
are calculated that contain the buffer zones. Algorithmically, they are saved both in their vertex and
their half-plane representations. All obstacles vertices are collected in the set Vob. If vertices of newly
discovered obstacles are contained in the buffer zone of any other obstacle, they will be removed from Vob

and only necessary vertices remain.
Then, a graph with the set of nodes V := Vob ∪ {g, s} is constructed that contains potential paths
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from the current position s node to the goal position g node. The weighted, undirected graph (V,E,w),
E ⊆ V × V , contains a suitable set of edges E and corresponding edge weights w : E → R, i.e. the
Euclidean distance between corresponding nodes. All those edges are added to the graph for which the
straight line between the two corresponding nodes does not lead through one of the enlarged obstacles.

The constructed graph contains possibly many feasible paths toward the goal. Hence, Dijkstra’s
algorithm [21] is utilized to find the shortest path from the current start position node to the goal node.
The optimal path is represented by a sequence of nodes Vopt =

[
v1 v2 · · · vg

]
where the start node is

shown by v1 and vg is the goal node.
Using spline interpolations in the x- and y-dimensions of the points in Vob, a continuously parametrized

path based on the calculated graph-theoretic path is calculated. More details about the utilized path
planning approach and the memorizing functionality can be found in [9]. Based on this path planning
approach, the following section deals with the formation control strategy.

4 Formation Control Using ALPSO

The fundamental challenge of this paper is that n omnidirectional mobile robots shall transport a thin
elastic plate from a given start position s ∈ R2 to a given goal position g ∈ R2 while they keep the plate
stable. To this end, the center of mass of the plate shall always be in the convex hull created by the
swarm robots under the plate, otherwise the plate will fall off the robots. Therefore, the formation shape
plays a vital role. In the field of formation control, it is common that a certain formation is defined, e.g.
four robots shall stay in a square formation. In these cases, the chosen formation shape could be defined
before system runtime by defining the desired robot positions relative to the formation’s center. In order
to have more freedom to do complicated maneuvers, it is more favorable if arbitrary and dynamically
changing desired formation shapes can be computed in each time step. For instance, this gives the ability
for shrinking a formation so that it can pass through narrow passages. By dynamically changing the
formation, each robot knows its desired position relative to a coordinate system located in the plate’
center and each robot runs its own distributed controller.

In order to create a convex hull around the plate’s center, the robots shall spread out under the
plate. Hence, a deployment problem is solved in each time step to find the desired formation shape. The
robots shall deploy themselves in a convex polygon, i.e. below the plate’s area, such that they have good
coverage. To find the desired formation, at first space partitioning shall be solved. Hence, we are solving
the coverage problem to decompose the space. To this end, suppose that n mobile robots are at the
points (p1, ...,pn). The aim is to find the best partitions {W1, ...,Wn} of the polygon W which maximize
the coverage. Therefore, the total cost function is

H(p1, ...,pn,W) =

n∑
i=1

∫
Wi

‖q − pi‖2dq. (5)

The Voronoi partition W = V(p1, ...,pn) = {V1, ...,Vn} is the unique partition that minimizes the cost
function H(p1, ...,pn,W) for the given set point where

Vi = {q ∈ W | ‖q − pi‖2 ≤ ‖q − pj‖2 ∀j 6= i}. (6)

The desired position of each mobile robot is the centroid of its own Voronoi cell

cVi =
1

AVi

∫
Vi
qdq. (7)

In each time step, the Voronoi partition is recalculated using the positions of the mobile robots as
generators. Then, they move toward the centroid of their own Voronoi cell. Finally, the mobile robots
converge to one of the critical points ofH(p1, ...,pn,W). As an extension, it is possible to employ weighted
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Voronoi decomposition to define areas of particular interest under the plate. In order to make sure the
plate always remains in the convex hull created by the formation, a buffer zone of width εf is subtracted
from this convex hull and a constraint will be considered.

The planned path is utilized for the, possibly virtual, leader of the formation. Subsequently, the
formation’s center of mass is considered as the virtual leader of the swarm, navigating all robots to the
target position. When the distance between a mobile robot and an obstacle is less than a predefined
threshold, the real robot, that is in the danger area, takes the lead. As will be seen in the simulation
results, this gives the swarm the ability to do complicated maneuvers, e.g. transporting a plate through
a narrow passage that just only one mobile robot can pass at a time.

Another aspect of the researched problem is that a mobile robot shall avoid collisions with the other
mobile robots and the obstacles. To deal with this issue, a safety buffer zone is defined around each
mobile robot, so that other robots cannot enter this area. Also, the Euclidean distance between the
detected obstacle point ro and the robot position is constrained to be larger than dr + εo where dr is the
radius of a Robotino and εo is the minimum distance to an obstacle.

If the formation’s center cr coincides with the plate’s center of mass cp, transportation is easier since
the mobile robots can do symmetric movement. This is the approach from [8, 9, 10] where the formation
is shrunk symmetrically in a coordinated way to keep the center of masses of formation and plate very
close together. However, this way restricts the formation to symmetric shapes and it might decrease the
ability of the system to do more complicated maneuvers. On the other hand, due to uncertainty in the
real experiments, it is not possible to keep these two points close for extended periods of time. Hence,
a circle with radius drp around the formation’s center of mass is considered in order to force the plate’s
center to stay there. This constraint also helps to keep the plate stable by keeping the plate’s center of
mass inside the stability area.

The schematic of the conditions for a group of four mobile robots is depicted in Figure 3. This figure
shows that the area under the plate, i.e. the polygon P, is partitioned into Voronoi cells depicted by
brown lines. Also, the safety areas around the mobile robots and the obstacle are drawn by the buffer
zones εr and εo, respectively. The plate’s safety margin defines an area in which the mobile robots shall
be located. It is a smaller version of the plate’s polygon P by buffer zone εp. The plate’s stability zone is
illustrated by lines dashed in black where the plate’s center shall always be there. This zone is a smaller
version of the formation’s convex polygon F by buffer zone εf. Also, the circle with the radius drp around
the formation’s center of mass is shown in red color.

On the basis of constraints, the problem is turned into an optimization problem. We are seeking an
optimal solution for a distance-based potential function which satisfies our constraints. A suitable cost
function for robot i at time step k can be defined as

J(xk
i ,u

k
i ) = ‖cVi −

[
E 0

]
(Adx

k
i + Bdu

k
i )‖2 (8)

to force the robots to move toward the center of Voronoi cells. Here, Ad and Bd are system and input
matrices from the discrete-time system. Subsequently, the optimization problem to be solved by each of
the robots can be given in the form

minimize
uk
i

J(xk
i ,u

k
i )

subject to vmin ≤
[
0 E

]
xk+1
i ≤ vmax

‖
[
E 0

]
xk+1
i − ro)‖2 ≥ dr + εo

ψ(
[
E 0

]
xk+1
i ,P) ≤ −εp

ψ(cp,F) ≤ −εf

‖cp − cr‖2 ≤ drp

‖xk+1
i − xk

j ‖2 ≥ 2(dr + εr), ∀j 6= i

(9)
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Fig. 3: Schematic of transporting a plate with conditions.

where ψ(s,W) is a function that calculates the distance between the point s and the polygon W. If the
point is located within the polygon, the results will be negative.

To solve the optimization problem, augmented Lagrangian particle swarm optimization (ALPSO) [18]
is utilized. ALPSO is a powerful stochastic optimization approach for solving nonlinear, non-differentiable,
or non-convex engineering problems where equality and inequality constraints are included. This approach
is a combination of the structure of the basic PSO technique and an extended non-stationary penalty
function approach.

5 Simulation Results

The simulations have been implemented in Matlab R2017b. For detecting the obstacles and mapping the
environment, it is assumed that each mobile robot has a sensor that can sense distance measurements
around its center of mass. The sensor is simulated by casting virtual light rays in all directions around
the robots. The virtual light rays are sampled and the intersection of the rays with visible surfaces of
each obstacle are calculated. Therefore, similar to real-world sensors, the distance measurements are of
limited accuracy. More detail about sensor simulation and the memorization of obstacles can be found
in [9].

In the implementation, there might be multiple obstacles in the field of view at once. Therefore, a
heuristic approach using the measured distance values is implemented in order to guess where one obstacle
ends or begins. By implementing this strategy, the robots can memorize their surroundings to navigate
through very intricate environments. To transport the plate through narrow passages, it is assumed that
the plate moves above the obstacles so that the formation can shrink to squeeze through the passage. If
the obstacles are taller than the plate’s traveling height, to prevent collisions between the obstacles and
the plate, one could increase εo to a value larger than the width of the plate.

Here, three scenarios are simulated to analyze the performance of the proposed scheme. In all of
the following figures, the obstacles are drawn as dark gray areas. The robots are represented by light
blue circles with dark blue outlines and the plate is drawn as a transparent rectangle with thick black
outlines. The pins supporting the plate are located in the robot’s rotation centers and it is drawn by
dark blue circles. The convex polygon created by the robots is depicted by the lines dashed in black and
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the Voronoi diagram is depicted by brown lines. The plate’s center and the formation’s center of mass
are shown by black and red circles, respectively.

The first scenario, a simple deployment simulation, is shown in Figure 4. In this simulation, four
mobile robots are located in a dangerous way in Figure 4(a). Over time, the Voronoi diagram converges
to a centroidal Voronoi tessellation. As can be gathered from the figure, the closeness of the plate’s center
and the formation’s center is advantageous. The robots converge to the desired positions while they keep
these two points close together. If there exists a big gap between these two points, the robots shall move
faster to compensate the error using the slippage between the pin and the plate. However, due to the
velocity constraint, this is not possible.

Figure 5 shows the second scenario, with five mobile robots transporting a plate through a narrow
passage where only one mobile robot can pass at a time. In this simulation, the robots pass one by one
through the passage while they avoid the obstacles and collisions with each other. This simulation clearly
shows the performance of the scheme when the formation is changing constantly over time. The trajectory
of the formation’s center, which is marked by the line dashed in red, shows how the formation’s center
moves to pass through these obstacles. Also, switching of the leadership helps the robots to navigate the
formation. Comparing the Figures 5(a) and 5(l) reveals that the last and the first formation shapes are
different and this is caused by different local minima of the deployment problem.

Also, the velocity of the robot located in the lower left of the formation in Figure 5(a) is shown in
Figure 6. This figure shows that the formulated optimization problem enforces the robots to not move
faster than the maximum velocity of 0.8 m

s .

(a) (b) (c)

(d) (e) (f)

Fig. 4: Deployment under the plate.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 5: Transporting an elastic plate through a narrow passage.

The third scenario is shown in Figure 7 where three mobile robots transport the plate in an unknown
environment to the desired position. In the following simulation, the start position of the formations
center of mass is drawn by an asterisk and the goal position is marked by a diamond. As it can be seen in
Figures 7(b) to 7(d), the swarm starts to move toward the goal. When it finds that there is no direct way,
the path is changed to another direction. This is done by memorizing the environment as described in [9].
The results show that the formation is successfully navigated through even very intricate environments
by using the memorizing functionality.

The next challenge is a narrow tunnel that is very hard for two robots to pass simultaneously. Fig-
ures 7(e) to 7(h) show how the robots transport the plate through this tunnel. Then, the robots reach a
narrow passage that is different from the passage in Figure 5. Here, the obstacles restrict the movement
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Fig. 6: Velocity of the robot located at the left down in Fig5(a).

of the robots in two directions and the robots have less area for maneuvering. Although the location of
the obstacles poses a bigger challenge, the robots can transport the plate safely. The last task is to pass
through the obstacles shown in Figures 7(m) and 7(n). It can be seen that the robots use all the area
available for movement, even a small crack in a non-convex obstacle. Finally, they safely reach the goal
without robot-obstacle collisions or the plate falling down.

All things considered, the examined examples shows the devised scheme delivers a very favorable
performance. The robots keep the plate stable during the transportation and they can pass through
intricate environments. Although in many mechanical contact problems, the slipping acts as an unwanted
disturbance, it gives the ability to change the formation under the plate and the robots use the slipping
in order to alter the formation shape.

6 Conclusions

In this paper, a novel approach for transporting an elastic plate using only friction and normal forces
has been investigated. A linear complementarity problem is solved to calculate the normal forces of the
unilateral contacts between the load and the mobile robots. The obstacles are mathematically represented
as convex polytopes in order to find a suitable path through an unknown environment. This enables
the representation of arbitrary polygonal obstacles. As a next step, the formation control has been
investigated as another aspect of this research. The absence of prehensile contact gives the ability to
change the formation under the plate. Using this mechanism, a formation control scheme based on
a deployment problem has been designed where the desired positions of the robots are the centers of
Voronoi cells. To guarantee the stability of the mechanism, stability conditions have been investigated
to prevent the plate from falling down. Augmented Lagrangian particle swarm optimization has been
employed to solve the optimization problem in a distributed fashion. The overall scheme has been tested
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Fig. 7: Plate transportation through an intricate, memorized, unknown environment.
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in simulations and the results show that the robots can spread out under the plate properly. Also, the
robots can perform intricate maneuvers while they maintain the stability of the plate. Finally, the scheme
has been tested in an unknown environment with many obstacles and the simulation results show that
the scheme works well also in this example. As the next step of this research, the scheme will be tested
on the prepared hardware to investigate the performance of it on the real robots.
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