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1 Introduction 
Parallel robots are increasingly being used for rehabilitation of the lower limb due to their 

robustness, simplicity, versatility, load capacity and low cost. In the last decade, a few 
rehabilitation parallel robots (RPRs) have been developed, mainly for the ankle [1] and, more 
recently, for knee rehabilitation [2]. Unlike exoskeletons where mechanical actions are usually 
applied on the joint axis, RPRs exert mechanical actions over the distal end of the limb. For this 
reason, the control actions monitored from the robot may not correspond with those transmitted 
to the muscles and ligaments. ๠is limits the effectiveness of the exercises as well as the possibility 
of developing dynamic safety systems. As a result, developing a biomechanical model for the 
estimation of the relevant forces in the knee, such as muscle, tendon, ligament, and tibial contact 
forces, while doing the exercise with the robot, is critical for practical implementation of RPRs.  

Recently, a relatively high effort has been performed for developing  muscle-skeletal models 
(MSM) in order to evaluate muscle-tendon forces and joint contact forces during motion of lower 
limb. ๠e levels of complexity and accuracy of such models are quite diverse. For instance, 
references [3, 4] show that complex models in which many parameters are adjusted can provide 
good results.  However, such models usually require expensive additional equipment, e.g. EMG 
measurements in vivo, MRI scans for model calibration parameters, etc., which makes them 
unsuitable for their use in clinical applications. On the other hand, the models can be quite 
sensitive to changes in the input parameters; sometimes these parameters are estimated through 
an optimization process, without ensuring their physical feasibility [5]. 

An alternative approach is to use simpler and more robust generic models, whose 
effectiveness can be increased by improvements or adjustments of some specific characteristics. 
A recent review [6] analyzes which are the most influential characteristics, such as the 
representation of the joint kinematics, which affects the lever arms of the muscles during 
movement, the number of lines of action of the muscles, the optimization process to solve the 
redundancy of the muscular problem, muscular activation models, among others. 

Most applications of lower extremity MSM are associated with the study of human gait, while 
the effort devoted to the study of rehabilitation exercises and strengthening of the lower 
extremities remains weak [7]. In addition, common models in this field require a very high level 
of personalization and also use EMG signals as inputs to the model [8, 9]. ๠is makes their 
implementation difficult in rehabilitation robots from a clinical point of view. 
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It is worth mentioning that MSM for rehabilitation robots are mainly oriented to the control 
of exoskeletons [10]. ๠ere is a wide variety of models in this field, from simple joint models for 
estimating joint moments [11-13], to models with more anatomical details that use EMG signals 
as inputs [14, 15]. In general, the models used in rehabilitation robots are usually simple  with 
limited possibilities for personalization, although some works have also been published using 
much more detailed models developed in commercial software such as Anybody [16] and 
OpenSim [17, 18]. Moreover, the application of dynamic modeling along with  RPRs is much 
more recent and less extended.    

MSM for clinical applications in rehabilitation robots should work with low-cost systems, 
they should not imply the use of complex instrumentation and they should work with real time 
algorithms. Furthermore, they should provide precise estimations of internal forces at both muscle 
and joint levels. ๠is implies a certain level of details as well as to be subject-adaptive. Satisfying 
these conflicting criteria, model simplicity and accuracy, can be performed by implementing a 
model that capture the most relevant aspects for the specific applications under consideration [6]. 
In this manner, model precision can be improved by implementing a parametric model that 
considers the most relevant anatomical and inertial characteristics and that can be subject-adaptive 
from anatomical landmarks. Moreover, a realistic definition of the  joints, especially of the knee 
joint, is a critical issue which  has a direct influence on the dynamic model accuracy [19]. 

Another important issue affecting the accuracy of the model is the number of muscles and 
muscle insertions being considered. It is evident that more details in muscle representation leads 
to more accurate MSM [20]. However, increasing the number of muscles requires more 
information about their anatomical characteristics, makes muscle actions a redundancy problem 
more difficult to solve, and it also increases the computational cost of the associated optimization 
problem. For this reason, in many works adjacent muscles are grouped or only a set of muscles 
are considered when solving the redundant problem [7]. 

In order to solve the problem of redundant muscular forces, many methods have been 
proposed. For instance, the reduction method [21], the method of addition [22] and the 
optimization method [23-26]. ๠e latter provides more accurate estimates of muscular forces and 
is widely implemented. However, it has a relatively high computational cost. ๠erefore, it is not 
the most appropriate in systems requiring real-time calculations. Similarly, systems based on 
EMG signals [8, 9] are also discarded from their use in the clinical context because they require 
individual calibration in each session. For this reason, the problem of muscle strength redundancy 
must be adapted in order to make calculations in real time and with minimum equipment. 

Finally, the acquisition of the input information of the model and the calculations must be 
compatible with the low-cost and the operation in real time. MSMs use input information 
associated with movements and external applied forces. In conjunction with the inertial and 
gravitational forces, they allow to solve the inverse dynamic problem and to obtain the actions at 
joint level. ๠e incorporation of the anatomical features, along with the optimization process, 
provides an estimation of internal actions compatible with the result of the inverse analysis. In 
this process there are especially expensive phases in computational time which are difficult to 
compute in real time. 

Furthermore, the complete kinematic analysis (positions, velocities and accelerations) implies 
the use of high cost video-photogrammetry systems as well as kinematic analysis and numerical 
derivation algorithms. In addition, the resolution of the inverse dynamic problem and muscle force 
optimization has also a high computational cost. However, when slow movements are performed, 
as is the case in rehabilitation robots, the effect of inertial forces could be relatively small, which 
allows the use of quasi-static analysis [8, 27, 28]. Moreover, if minimizing the sum of muscle 
stresses is selected as the optimization criterion [29], then the optimization problem can be 
extracted from the dynamic model and transformed in a position dependent problem that can be 
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compute offline. By doing this, data acquisition process will be simplified drastically and the 
computational time will be lowered during measuring process. 

๠e purpose of this study is to improve the computational efficiency of the generic dynamic 
model presented in [29] such that it can be used in control algorithms of a parallel robot designed 
for knee rehabilitation [2]. ๠is model can be adapted to each person by using the position of the 
anatomical points after adequate three-dimensional scaling. Generally, the accuracy of generic 
models depend on many factors related to the mode of application. ๠e most important factors are 
1) the kinematic representation of lower extremity joints affecting largely muscle moment arms 
during motion, 2) the considered muscles and the method of their representation, and 3) the 
method adapted to solve the redundancy problem of muscle forces [6]. ๠e latter factor 
corresponds to a very high computational cost especially when trying to solve this redundancy by 
a numerical optimization procedure. In this work, a direct and computationally efficient procedure 
is proposed to tackle  this issue and to enable its use in real time control algorithms for 
rehabilitation robots.  

๠is work is organized as follow: next section presents the material and methods related to 
the formulation of the problem. ๠is section makes an overview about the theoretical background 
of biomechanical model, introduces the offline calibration stage, the calculation of the internal 
forces in the online stage, and the method adapted for model verification. ๠e obtained results are 
presented in section 3. In section 4 results are discussed.  

 

2 Material and methods 

2.1. Biomechanical model 
๠e proposed MSM models the lower limb by means of four segments:  pelvis, femur, tibia 

and foot segments. ๠e model was introduced initially in [29] for the estimation of relevant forces 
in the knee joint. For the sake of completeness, this section presents general information about 
the model giving more attention to modifications made to the model [29] to improve its efficiency 
and computational time. ๠e improvements enable the model to work in real time for a 
rehabilitation tasks with a parallel robot. Additionally, a comparison between the muscle forces 
predicted by the model and the measured EMG signals is performed.   

๠e inputs to the kinematic model are the coordinates of a set of anatomical landmarks, 
measured by a video-photogrammetry system (Fig. 1). ๠e underlying kinematic model considers 
a three degrees-of-freedom (DoF) spherical joint to model the hip joint, one DoF four-bar 
mechanism for the knee joint and one DoF revolute joint at the ankle joint  (AJC), leading to five 
independent generalized coordinates to describe the model. ๠e location of the HJC is determined 
by using the functional method presented in [30] and implementing the protocol proposed in [31] 
On the other hand, the four-bar mechanism that best fits the relative motion between the femur 
and the tibia is determined using an optimal synthesis procedure based in the formulation 
introduced by [32] with some modifications. Lastly, the AJC location is in the midpoint between 
the medial and lateral malleolus. 
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Figure (1). Anatomical points inputs to the kinematic model.  

 
Once the kinematic joints are defined the dynamic model can be built considering the 

generalized coordinates describing these joints. More precisely, three generalized coordinates are 
needed for hip joint, one for the four-bar mechanism, and one for the revolute joint at the ankle. 
In function of these coordinate the dynamic model can be written as,  

0I G Mus Ext      
   

  (1) 

where, Mus , I


, G


 and Ext  are the generalized forces corresponding to muscles, inertia, gravity 

and external forces, respectively.  
Note that all the generalized forces expressed in equation (1) are calculated by using the 

Jacobian transformation of the corresponding forces/moments [33]. For the inertial parameters 
they were estimated applying the equations provided in [34]. Note that the complete model 
introduced in [29] includes all the inertial effects and the corresponding inertial parameters. 
However, as will be shown in this paper, the inertial forces that affect the knee joint are very small. 
As a result, lower limb segments’ masses and center of gravity positions are the only necessary 
inertial parameters.   

With respect to the muscles, via points and via cylinders approaches were considered based 
on the measurements made in [35] with some modifications. ๠e modelled muscles are, the 
following flexors: biceps femoris long head and short head (BicFemCL and BicFemCB), 
semimembranosus (SemMem) and semitendinosus (SemTend), gastrocnemius lateral and medial 
(GastLat and GastMed), gracilis (Gra) and sartorius (Sar).On the other hand, the following 
extensors: rectus femoris (RecFem), the two portions of the lateral vasti (VasLat), the three 
portions of the medial vasti (VasMedInf, VasMedMed and Vas-MedSup), the vasti inter-medial 
(VasInt) and tensor fascia latae (TenFacLat). Note that, as reported in [35], the rectus femoris 
muscle has two different insertion points on the femur (RecFem1 and RecFem2), while the vasti 
inter-medial and the lateral vasti present various. ๠e last were regrouped into two principal points 
for each (VasInt1 and VasInt2) and (VasLatInf and VasLatSup), respectively, leading to a net of 
10 extensor muscles. Moreover, the insertion points presented in [35] were measured for a given 
orientation of the leg and a given bone size. To make them available for any orientation of each 
bone, local reference systems were defined in which the insertion points were recalculated. Also 
a 3D scaling matrix, similar to the transformation introduced in [36], was implemented to adjust 
the recalculated local insertion points to any bone size. 

Right and Left Posterior-
Superior Iliac Spines 
(RPSIS and LPSIS) 

Right and Left Antero -
Superior Iliac Spines 
(RASIS and LASIS) 

Lateral and Medial 
Femoral Epicondyles 
(LFE and MFE) 

Fibular Head (FH)  

Lateral and Medial 
Malleolus (LM and MM)

1st and 5th Metatarsal 
Heads (1M and 5M) 
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2.2. Offline Calibration Stage 
Before using the dynamic model to estimate the relevant forces in an online process, an offline 

calibration stage is accomplished to: a) estimate joint’s parameters such as the position of the HJC  
and the dimensions of the four-bar mechanism, b) scaling lower limb model segments to actual 
sizes, and c) defining local anatomical coordinate systems (ACS) for each segment from the 
position of the anatomical landmarks, in which local coordinates of joint parameters, muscle’s 
insertion points, center of mass locations and inertial parameters are calculated. Afterwards, in 
the online stage, global positions of each parameter can be reconstructed from these local 
coordinates and the position of the ACS.  

In addition,  to improve the efficiency and the computational time of the online force 
estimation stage, muscle’s coefficients, or moment arms, were calculated in an offline process. 
For this purpose, a simulated model was built from the scaled lower limb segments and muscle’s 
insertion points. Its workspace is defined as all the possible movements that the lower limb can 
perform in a given task as a function of the generalized coordinates. ๠is workspace according to 
the maximum/minimum limits of the generalized coordinates with equal step-size for each one. 
๠en muscle’s coefficients were calculated at each point of the discretized workspace. As 
mentioned in [29], their values are obtained directly using the Jacobian calculation [33]. Jacobian 
calculation produces a more accurate estimation of muscle’s coefficients as the four-bar 
mechanism reproduces better the relative motion between the femur and the tibia than a model 
based on a revolute joint. It worth mentioning that the Jacobian measures the moment arm of the 
considered muscle about an axis perpendicular to the plane of relative motion between the femur 
and the tibia and passing through instantaneous center of rotation. ๠e axis perpendicular to the 
plane can be obtained directly from the four-bar mechanism [37].  

Another important issue related to muscle force estimation is the redundant system of 
actuators. To solve this issue, constraint optimization procedure was implemented in [29], in 
which co-contraction between muscles was observed when minimizing the sum of muscle stress  
as an objective function, equation (3). Fortunately, this type of problem can be solved analytically 
using Lagrange multipliers and in the offline stage, see [38]. Leading to a high computationally 
efficient algorithm. To illustrate this concept, consider σi is the stress in the ith muscle, i.e.  

i
i

i

F

A
   (2) 

Where, Fi corresponds to the ith muscle force and Ai its cross-sectional area. ๠en the objective 
function proposed previously will have the form,  

2 2 2
1 2min n         (3) 

Note that muscle forces must confirm equation (1). i.e.  
 1 1 2 2 n n MusC F C F C F       (4) 

where, Ci corresponds to ith muscle coefficient. Note that only one generalized coordinate is 
considered here that corresponds to the knee joint. ๠is equation can be rewritten as,  

 1 1 2 2 n n MusB B B          (5) 
where, i i iB C A  
๠en, in terms of σi the objective function is equation (3) subject to constraints provided in 
equation (5). One can prove that, using Lagrange multipliers, this minimization problem has the 
following analytical solution, 

2

1

2
i i Mus

i n

j
j

B B

B

 




 


 (6) 

Where λ is the Lagrange multiplier and has the form,  
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Hence, the magnitude of ith muscle force simply is,  

2

1

i i Mus
i n

j
j

A B
F

B








 (8) 

Now take, 

2

1

i i
i n

j
j

A B

B







,  (9) 

๠en,  

i i MusF    ,  (10) 

Which is a direct relation to obtain the magnitude of muscle force from the generalized muscle 
force. Note that i  is kinematics dependent variable that can be calculated in the offline stage, 

which has a great effect on the computational time of the online one.   

2.3. Estimation of muscle force in real time – the online stage 
Once the offline calibration stage is performed, one can proceed with the online force estimation 
in muscles, meniscus contact and knee ligaments.  
For the considered rehabilitation task, the motion of the anatomical landmarks is recorded by 
videophotogrammetry. ๠e reaction force/moment between the foot and the parallel robot is 
measured by a force sensor. Based on these inputs, ACS are defined and model motion is 
reconstructed. Linear and angular velocities and accelerations are estimated using local cubic fit. 
๠en the generalized inertial, gravitational and external forces are calculated as mentioned 
previously. Using equation (1) the generalized muscle forces are obtained. According to the 
current value of the generalized coordinates the values of i  is retrieved from the stored offline 
values using local linear interpolation. Consequently, the magnitudes of muscle forces can be 
calculated using equation (10). Finally, important knee forces such as normal force on the 
meniscus and ligament forces are calculated from the tibia free body diagram.  
In this context, and in order to check whether  the offline calculation stage affects the estimated 
force, the forces are compared with the ones obtained by the complete model presented in [29]. 
Although the offline calculation of the muscle coefficients implies a significant reduction in the 
computational cost online, there are still relatively expensive calculations associated with the 
estimation of the generalized inertial forces. It implies the calculation of the linear and angular 
velocities and accelerations, that is held by applying a local curve fit to the measured positions of 
the anatomical point to filter the data and to obtain the first and second time derivatives. In addition 
to the calculation of the Jacobian to obtain the generalized forces. It worth mentioning that local 
fit algorithms and subsequent derivatives implies a high computational cost. Also the derivatives 
are not reliable since accelerations correspond to the current state of the net forces and not from 
time history of the measured data. Moreover, knee rehabilitation tasks are of low speed and 
produces relatively low inertial forces in comparison with external and gravitational forces. As a 
result, they can be considered negligible from the dynamic model leading to a quasistatic problem. 
In fact, same conclusion was drawn in [29, 39]. To support this hypothesis another comparison is 
made in the next section between the modified dynamic model after removing the inertial forces 
and the original one.  
In conclusion, the inverse dynamic system expressed by equation (1), after removing the inertial 
componets, leads to the following simple equation,  



7 
 

 ,Mus G Ext    
  

  (11) 

where the gravitational generalized force will be, 

   0 0 0 0 ,
Tib Foot

T TT T
G G Tib G FootJ W J W       (12) 

and,  

 ,
Ext Foot

T T
Ext P Ext ExtJ F J M    

 
  (13) 

Where,  ,  ,  ,  and 
Tib Foot Ext Foot

T T T T
G G PJ J J J  are the Jacobians relating the gravitational forces of the tibia 

WTib and the foot WFoot, and the external force ExtF


and moment ExtM


, respectively, with the 

generalized coordinate at the knee. After the calculation of the generalized muscle force Mus  

muscle forces can be obtained directly by applying equation (10). All the previous equations are 
simple, direct and computationally efficient ones, which enable real-time muscles’ force 
calculation which is one of the objective of this paper.  

2.4. Validation: Coherence level between the estimated forces and the EMG 
signals  

Given that it is not possible the direct measurement of muscle forces, model validation is 
limited to a comparison between the proposed model and EMG signals. Experimental validation 
was accomplished using slow motion squat exercises. It was selected because this motion imposes 
high force levels at knee joint that induce moments and muscle forces higher than those resulted 
in normal gait motion. For this reason, this kind of motion was selected in previous studies for 
the validation of lower extremity dynamic model [40, 41]. Note that this exercise is faster than 
rehabilitation exercises with robots. However, as will be shown in results section, the inertial 
forces presents relatively negligible effect, supporting the  hypothesis for neglecting them from 
the dynamic model.  

In this experiment, a standard biomechanical analysis device was used for capturing motion 
and measuring external forces, which was validated in previous studies. It consists of two 
Dinascan IBV force platforms for ground reaction forces [42] and a Kinescan video-
photogrammetry system for the analysis of the motion of corporal segments [43]. 

In this preliminary study experiment was accomplished by only one subject. ๠e considered 
squat exercise consisted on repetitive cyclic motion, up and down with three load levels, each of 
two trials: i) with no load (L0), ii) with a 6 kg backpack (L1), and iii) with a 12 kg backpack (L2). 
๠e subject signed an informed consent and all the tests were approval by the Ethics Committee 
of the Polytechnic University of Valencia. 

For each case the EMG signals were recorded for the following muscles: gastrocnemius, 
biceps femoris, vastus medialis and vastus lateralis muscles, using a Noraxon equipment. ๠e 
signal was rectified and the RMS signal was used as an estimator of the level of muscle activity. 

With respect to model based force estimation, two versions of the dynamic model were 
considered:  

a) A full dynamic model (FDM), with the resolution of the inverse dynamic problem 
including the inertial forces and an muscle force optimization process based on minimum 
stresses criterion [29]. Calculations were made after completing the experiment, starting 
from the measurements taken simultaneously by the video-photogrammetry system and 
the force platforms. 

b) A simplified version based on muscle coefficients and without inertial forces, static 
geometric model (SGM). In this case, the muscle coefficients were previously calculated 
from the data of the model’s calibration tests . ๠is model has the same inputs as the full 
one, however, only the generalized coordinates are calculated, then, as mentioned before, 
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the values of i  is retrieved from the stored offline values by interpolation, and the 
magnitudes of muscle forces are calculated using equation (10). 

 
Starting from the obtained results, three verifications were made. In  first place, the starting 

hypotheses was verified (little influence of the inertial forces, which leads to the possibility of 
rewriting the dynamic problem of slow motion into geometric terms (quasi-static)). To do this, 
the forces estimated by both models were compared. ๠is comparison was made for each muscle 
using the intraclass correlation coefficient (ICC) between the estimates of the FDM and SGM 
models and the standard error of the measurements (SEM), as described in [44]. ๠ese 
calculations have been performed in a functional way obtaining a value for each trial [45]. 

Once verified that the estimations obtained from FDM and SGM are very similar, the 
concordance between SGM and muscular activity was verified over the reference muscles (vastus 
lateralis, VL, y vastus medialis, VM), using Spearman correlation coefficient.  

Finally, the third level check consisted in the verification of the predictive capacity of the 
model. To do this, the trials with loading conditions L0 and L2 were used to establish a functional 
relation between the muscle forces estimated by the model, VL and VM muscles using SGM and 
the corresponding EMG observed signals (rms value). ๠en this functional relation was used to 
estimate the forces in the same muscles for loading condition L1, as a function of the 
corresponding EMG signals (rms) only. ๠ese new muscle estimates are denominated as FVLemg 
and FVMemg. For verification, they were compared with the same muscles values obtained by the 
model for the same loading conditions. ๠e comparison was made using ICC and standard error 
of the mean SEM.  

3. Results 
Table (1) presents the median and the 95th percentile of the muscle forces of the major 

activation (VL and VM), estimated using the complete dynamic model (FDM), while figure (2) 
shows an example of rectus femoris muscle coefficients as a function of the considered 
generalized coordinates.  

Table 1. Maximum (computed as 95th percentile) and median values (between parentheses) of the estimated muscle 
force using FDM at each loading level. All the values are in N.  

 Load level  
Muscle L0 

Fmax (Fmedian)
L1 
Fmax (Fmedian) 

L2 
Fmax (Fmedian) 

Vastint123 46,3 (14, 3) 53,1 (20,1) 56,7 (23,9) 
VasMedInf12 15,7 (4,8) 18,0 (6,8) 19,2 (8,0) 

VasMedMed12 80,7 (24,9) 92,6 (35,0) 98,9 (41,5) 
VasMedSup34 96,4 (29,8) 110,6 (41,9)  118,2 (49,7) 
VasLatSup12 424,9 (131,8) 487,3 (185,3) 520,7 (219,9) 

VasInt456 46,5 (14,4) 53,4 (20,2) 57,0 (24,0) 
VasLatInf4 16,0 (4,9) 18,4 (7,0) 19,7 (8,39 

 
Table (2) shows the standard error associated with the differences between the estimates  

calculated by the FDM and SGM models for the different portions of the vastus femoris muscle. 
As can be seen, errors were lower than 1.0 N for all trials except for one muscle, which was lower 
than 2.0 N. In addition, the ICC was practically 1 in all cases. As a conclusion, almost no 
appreciable difference appears between FDM and SGM models.  
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Fig. 2: Rectus femoris muscle coefficients versus the relevant generalized coordinates.  

 

 

Table 2. Differences between the force estimations using FDM and SGM models.  

Muscle  SEM (N) 
(maximun)

Vastint123 0.15 
VasMedInf12 0.05 

VasMedMed12 0.27 
VasMedSup34 0.32 
VasLatSup12     1.4 

VasInt456     0.15 
VasLatInf4     0.5 

 
Spearman correlation coefficients between muscle forces estimated by SGM and EMG 

signals, for the muscles under consideration (Vastus lateralis y Vastus medialis), are shown in 
Table (3). In these results, data corresponding to flexion movement was separated from the 
extension one, for each loading condition. 

  

Table 3. Spearman correlation coefficients between muscle forces estimated by SGM and the rms value of EMG 
signals. Mean (standard deviation) for all trials.   

 Muscle 
Movement Vastus lateralis Vastus medialis)

Extension 0.940 (0.030) 0.928 (0.026) 
Flexion 0.939 (0.015) 0.920 (0.035) 

 
Finally, the concordance between the muscle force estimations for vastus medialis and 

lateralis muscles under L1 loading conditions is shown in figure (3). Solid lines correspond to the 
forces estimated by SGM, (FVLSGM and  FVMSGM respectively), while the markers represent those 
estimated through the EMG signals of L1 and the force-EMG signal calibration curves obtained 
from the other two loading conditions L0 and L2 (FVLEMG and  FVMEMG). 
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As can be seen, the agreement between the two estimates is excellent for both muscles. ๠e 
SEM was 9.1 and 45.8 for the vastus medialis and lateralis muscles, respectively, and the ICC 
values are greater than 0.9 (0.953 and 0.937 for the vastus medialis and lateralis muscles, 
respectively). 

Fig. 3. Anatomical points inputs to the kinematic model 
 
 

 

4. Discussion and conclusions 
In this work, a simplified, accurate, and computationally efficient model for human lower 

limb was developed, which enables its future use in advanced based model control algorithms for 
knee rehabilitation using a low-cost parallel robot. ๠is model, in comparison with more detailed 
and complicated ones, presents the advantage of being simple, subject adaptable, and able to work 
in real time control schemes. ๠e model was obtained by assuming certain simplifications that 
will be discussed  in this section.    

๠e first simplification was the consideration of quasi-static model. As rehabilitation exercises 
are carried out at low velocities and accelerations of the different parts of the lower limb, the 
resulting inertial forces will present negligible effect on the dynamic model, in comparison with 
the external and gravity forces. ๠is assumption was verify in this paper, and also it was taken 
into consideration and applied in many previous works under the same conditions [8, 27, 28].  

Another important factor that has a high computational cost in the dynamic model, preventing 
its application in real time tasks, is related to the method  to deal with the redundancy problem of 
the actuating muscles, and the calculation of muscle coefficients, or moment arms. More precisely, 
for the first part, minimizing the sum of stresses in all muscles was found acceptable for producing 
a distribution of the generalized force between muscles [29]. ๠e traditional solution of this 
problem was the use of a high computational cost numerical optimization procedure. In this work, 
this problem was completely solved by replacing the optimization procedure by an equivalent 
direct, linear, and analytical equation that relates each muscle force magnitude to the net 
generalized force at the knee, see equation (10). ๠is conversion was accomplished using 

F
o
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Lagrange multipliers. ๠e constant of the relation of each muscle, i  in equation (10), was found 
dependent on the muscle coefficient, or moment arm, and its area.  

Afterwards, a simulated model was put forward to reproduce offline the motion of the subject 
in the considered rehabilitation task, from which muscle coefficients were calculated and so the 
corresponding values of i . Finally, these values were stored as a function of the discretized 
generalized coordinates. ๠en, in the actual rehabilitation experiment and according to the current 
value of the generalized coordinates, the values of i  was retrieved using linear interpolation 
from which muscle force magnitude was determined.  

Another aspect that distinguish this model in comparison with previous ones is the method in 
which the kinematics of the knee is represented. Here, a crossed links four-bar mechanism 
obtained by a synthesis process was used. ๠is mechanism better reproduces the knee joint than 
conventional revolute joint [29, 32] 

To validate the proposed procedure, a pilot test was conducted with a subject that carried out 
a squat exercise of different loading conditions by monitoring muscle activity using conventional 
EMG device. ๠is exercise was selected because it imposes high flexion moment at the knee and, 
as a result, produces a relatively high muscle and contact forces, in comparison with normal gait 
exercise [28].  

Results of the previous experiment show that the difference between the complete dynamic 
model and that one without inertial forces is negligible, supporting the hypothesis that a quasi-
static model is eligible to be used. For this type of model position data inputs is required only. 
Since the computation of velocities and accelerations can be omitted , there will be no need to 
measure the position with high accuracy. As a result, low-cost position capturing devices can be 
used.  

In addition, these results shows that the estimated force activity levels are similar to those 
obtained in other works of similar experiments [27]. In addition, high correlation was found 
between the estimated forces and measured EMG signals in all the considered trials. Finally, the 
proposed model showed an excellent predictive capability of muscle activation, at both activation 
level and timing. To prove this, a functional relation between predicted muscle force estimation 
and EMG signals was extracted. ๠en, it was used to predict the EMG signals for other loading 
conditions experiment starting from the estimated muscle forces. High level of concordance was 
found.  

Although the verification carried out in this experiment does not constitute a validation in the 
strict sense, since the internal forces have not been measured directly, the proposed model allows 
to obtain estimates of the distribution of forces coherent with muscular activity. 

Despite the fact that the comparison made in this study is not a validation for its capability of 
estimating internal forces. Still its good capability of estimating muscle’s activation, level and 
timing, enables its future use in model based control algorithms forrehabilitation robots. ๠ese 
estimations could be used in the control of rehabilitation robots, thus improving the one currently 
used, which is based generally on kinematic criteria, forces registered by the robot sensors or on 
the generalized forces in the joints calculated using simple models [8, 10].   For future work, this 
model will be compared with other commercial more detailed models. Experimental data size will 
be amplified considering more subjects and experiments related to human knee rehabilitation and 
strengthening exercises.   
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