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ABSTRACT — In this paper a new model-based corrector approach for handling stiff coupling loops
in explicit co-simulation problems is presented, where one or more subsystems may have direct feed-
throughs, but do not form an algebraic loop. In a first step the algorithm is developed assuming exact
model knowledge in form of directional derivatives as provided by the FMI 2.0 standard. In a second
step the necessary model information is identified at runtime via a MOESP (Multivariable Output Error
State sPace) subspace identification approach directly form the observed input and output data of the
subsystems. The quality of the identified model is assessed using a Extended State Space Model (ESSM)
approach, eliminating the need to explicitly estimate the state vector in order to predict a time-step.
Both algorithm types, the one based on exact model knowledge as well as the identification based, are
applied to a dual mass oscillator with linear and non-linear spring-damper characteristic. The gained
results are compared to several other coupling algorithms for evaluation purposes. It is shown that the
model-based corrector approach produces high quality results even for relatively large macro-steps,
while having minimal requirements in terms of model interface and tool capabilities.

1 Introduction

In recent years, the overall vehicle system has developed into an increasingly complex dynamic system in which
a large number of components and functions are connected across several physical domains. This trend is mainly
caused by the ongoing electrification of the powertrain, the use of active systems and intelligent control algorithms
in almost all areas. On the other hand the development cycles are getting shorter while less real prototypes are
available. For these reasons the use of simulation tools in the development of such complex technical systems has
evolved from an auxiliary technology to an everyday practice. Although the majority of the development process
is still strongly focused on hardware experiments and prototypes, an increasing trend towards pure or at least pre-
dominantly virtual development is emerging.

As a result of the trend mentioned above, engineering challenges are increasingly shifting from within the ded-
icated domains/departments to their interaction and integration. In order to effectively tackle these new cross-
domain challenges they must be addressed by a holistic simulation approach, covering all necessary aspects of the
vehicle. While some subsystems are modeled in multi-physical simulation tools, most are modeled in tools specif-
ically designed for a particular area of application. As a result of a long-term application specific development
process these simulation environments are very matured in terms of usability (through specialized user interfaces
and component libraries) and quality of results (through specialized equation formulations and optimized solution
methods), resulting in a very heterogeneous model landscape.

Keeping this situation in mind, so-called solver coupling or co-simulation offers a possible solution. Using this
approach each involved subsystem is solved independently over a small time interval (the macro-step size ∆T ) by
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Fig. 1: Categorization of co-simulation methods, c.f. [1]

their respective solver using their respective solver step size (the micro-step size δT ), which is why co-simulation
is often referred to as a multi-rate, multi-method approach. By exchanging all necessary input and output quantities
at the end of each macro-step, the interactions between the individual subsystems are established.The synchroniza-
tion and the required interfacing of the individual subsystem solvers, as well as the data exchange are usually
provided and coordinated by a so-called master algorithm. This master functionality can either be directly inte-
grated in one of the involved simulation tools or provided by a dedicated software, a so called middleware. As
systems grow in complexity (number of tools and inputs/outputs) using a dedicated middleware as neutral layer
between the individual tools offers advantages in terms of usability, robustness and compatibility.

This paper will start by giving a short introduction to co-simulation in section 2 and address the problems involved
with the different coupling schemes. The model-based correction algorithm will be derived from the coupled
systems continuous state space form in section 3 . In section 4 a short introduction to subspace identification,
especially the MOESP algorithm used in this work will be given. The combination of model-based correction and
MOESP identification into an efficient coupling algorithm is descibed in section 5 . In section 6 the performance
of the derived coupling algorithm will be assessed via simulation study. A final conclusion and outlook will be
given in section 7 .

2 A Short Introduction to Co-Simulation

Because the involved subsystems are interconnected, meaning that inputs of one subsystem are usually outputs
of another subsystem, these inputs are unknown at the beginning of the macro-step and are therefore not directly
available. Depending on how this problem is solved, co-simulation methods can roughly be categorized by whether
macro-steps are repeated and by the scheduling scheme of the subsystem solvers, depicted in figure 1.

2.1 Implicit and Explicit Co-Simulation

If an iteration scheme is used and macro-steps are repeated multiple times this leads to the so called implicit co-
simulation [2], Waveform-Iteration [3] [4] or strong or consistent approach [5]. Starting from an estimated solution
one macro-step is repeated several times, improving the solution in each step, until a certain termination criterion is
reached. As a result, if the implicit co-simulation does converge, it gives very accurate results [6]. Because of the
macro-step repetition the involved subsystem solvers have to be reset to a previous state after every iteration. This
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steep requirement is not supported by most proprietary simulation tools used in the industry, rendering the iterative
approach unfit for most applications [7]. In addition, the repeated calculation of the same macro-step produces an
overhead which slows down the overall simulation.

If, on the other hand, a non-iterative scheme is used and every macro-step is only performed once this leads to
the so called explicit co-simulation [2] or weak or inconsistent approach [8]. In the non-iterative approach, the
necessary inputs are extrapolated from previous and therefore known outputs. Because the extrapolated and the
true inputs usually differ, this method induces an error (the coupling error) and therefore gives biased results or
may even lead to insability [9]. This basic problem in explicit co-simulation is often referred to as the coupling
problem. On the upside explicit co-simulation has minimal requirements regarding the subsystem interfaces, which
practically every tool that supports an external interface or the implementation of use-code fulfills, making the ex-
plicit approach applicable for most proprietary simulation tools used in the industry.

Depending on whether all subsystem solvers are executed at the same time or one after another, explicit co-
simulation can further be divided into the parallel Jacobi type and the sequential Gauss-Seidel type [10] [11].
With regard to the coupling problem, the main difference between the two is that with the Jacobi type all inputs are
extrapolated, while with the Gauss-Seidel type some inputs are directly available due to the subsystems already cal-
culated in the sequence. Because the basic coupling problem is the same and to circumvent the scheduling problem,
meaning the order of execution involved with sequential co-simulation, this paper refers on parallel co-simulation
only.

2.2 Solution Approaches to the Coupling Problem

In order to minimize the coupling error very different approaches can be found in literature, which can basically
be divided into three categories. First of all, there are extrapolation methods, which aim to minimize the induced
coupling error by predicting the future inputs as accurately as possible before the macro step. Second there are
extension methods which aim to adjust the coupling signals during the macro-step calculation for every micro-step
by extending the model with an additional dynamic or functionality. Third there are correction methods, which aim
to mend the coupling error made by accounting for the induced error in the outputs after the macro step. Because
after one macro-step is before the next macro step, each correction method can theoretically be reformulated as an
extrapolation method and vice versa. Never the less the presented categorization captures the intention behind the
methods.

Typical extrapolation schemes use polynomials of various degrees in order to predict future values. In its sim-
plest form polynomial extrapolation of order zero is used, meaning the previous value is kept constant for the
duration of the macro step. This is known as zero order hold (ZOH) approach. For better approximation of the
coupling signals first or second order polynomials can be used, resulting in a first order hold (FOH) or second order
hold (SOH) approach. If available using micro steps or exact derivatives for extrapolation usually increases the
accuracy. While the extrapolation quality might increase with the order of the polynomial, the robustness decreases
due to Runge’s phenomenon [12]. More sophisticated methods like model-based coupling (MBC) [13] use a local
linear representation of the coupled subsystems in order to estimate the coupling signals.

Because in explicit co-simulation coupling data typically can only be exchanged at the end of each macro-step
∆T and not in between, adjusting the input signals for every micro-step δT involves extension of the subsystem by
an additional dynamic or functionality. The simplest extension approach is polynomial or spline interpolation of
the input signals for each micro-step based on the previous and extrapolated values, which is why interpolation is
often inherently included with the respective extrapolation method. Obviously such an interpolation approach only
respects the changes in the input signals with respect to time. More advanced approaches also include the change
of the inputs with respect to the outputs for every micro-step. Semi Implicit Coupling (SIC) [14] for example
uses the corresponding directional derivatives via a Taylor series. Linear Implicit Stabilization (LIS) [15] on the
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Fig. 2: schematic representation of the model based corrector approach

other hand uses a local linear representation of the residual system and solves it in conjunction with the subsystem
itself. Depending on the capabilities of the tool or solver used, extension methods can be either implemented in the
master algorithm, the input/output routine or the modeling itself, but apart from a simple interpolation approach
this might be difficult to realize in practice.

Since after the macro-step the true values of the inputs are known this additional knowledge can be used in or-
der to correct the error induced by the extrapolation necessary to calculate the macro-step in the first place. A
possible approach to improve the overall solution is to correct the input error, which was transferred directly to
the outputs due to direct feed-through. This method is known as Parallel Linear Correction (PLC) [16]. Since
the approximation error in the input signals also adds a residual energy to the subsystems over the duraton of the
macro-step another common approach is based on energy conservation. The Nearly Energy Preserving Coupling
Element (NEPCE) [9] aims to correct this residual energy by either adding or removing energy during the next
macro-step via an offset to the inputs. To further improve the solution NEPCE may also be combined with feed-
though correction [17].

Several of the coupling algorithms presented above allow the solution of strongly coupled systems (and there-
fore difficult coupling problems) in explicit co-simulation (e.g. NEPCE [9] with feed-through correction [17],
SIC [14], LIS [15] and PLC [16]). Almost all of them are based on model knowledge in form of directional deriva-
tives and therefore require a linear representation of the coupled system in the current time step. In principle the
FMI for co-simulation 2.0 standard allows the calculation of these directional derivatives [18], but only a few tools
commonly used in the automotive industry currently support this feature.

3 A Model Based Corrector Approach

The basic idea of the model based corrector approach is the following two step procedure, which is also depicted
in Fig. 2:

1. After every macro-step, estimate the local error ∆y in the biased outputs ŷ caused by the error in the estimated
inputs û and calculate the corrected outputs y = ŷ+∆y.

2. Account for the error in the subsystem states via an energy correction scheme (cf. NEPCE [9]) during the
next macro-step by applying an offset to the estimated inputs ûcorr = û+δu.
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3.1 Estimation and Correction of the Local Coupling Error

In order to derive an estimate for the local error we consider r ≥ 2 coupled non-linear subsystems, where the ith
subsystem is given in state-space form as

ẋi = fi (t,xi,ui)

yi = gi (t,xi,ui)

ui = ci (y1 . . .yi−1,yi+1yr)

(1)

where i = (1, . . . ,r) and xi denotes the state vector, ui and yi denote the input and output vectors respectively and
c(. . .) denotes the coupling equations, which are basically simple assignments of the output of other subsystems to
the inputs of the considered subsystem. Combining all coupled systems in vector form we get

ẋ = f(t,x,u)
y = g(t,x,u)
u = Ly

(2)

where e.g. x =
(
xT

1 , . . . ,xT
r
)T denotes the combined state vector [19]. The coupling equation can be written in

linear form, where L denotes the coupling matrix, which is a selection matrix with one non-zero entry per line.
Splitting the simulation in time intervals t ∈ (Tn,Tn+1) of step size ∆T and replacing the input vector u for the time
interval Tn→ Tn+1 by an estimated input vector û we get

û = e(t,un,un−1, . . .)

˙̂x = f(t, x̂, û)
ŷ = g(t, x̂, û)

un+1 = Lŷn+1

(3)

where the subscript denotes the time instance e.g. ŷn+1 = ŷ(Tn+1). Because the estimated input vector û is only
based on previous values of u, the original coupled system is decoupled into a set of r differential equations which
can be solved independently for the duration of the macro-step Tn→ Tn+1. As stated before, each decoupled sub-
system is typically solved with its own integration method and micro-step size (multi-rate, multi-method) with data
being exchanged after each of the n = 1, . . . ,N−1 macro-steps which make up the overall simulation time. Since,
in general, the estimated inputs do not exactly correspond to the true inputs we get biased state and output vectors
denoted by x̂ and ŷ respectively.

Substraction of eqn. 3 from eqn. 2 and linearization of the resulting error equations on the time interval Tn→ Tn+1
gives

ẋ− ˙̂x = An (x− x̂)+Bn (u− û)
y− ŷ = Cn (x− x̂)+Dn (u− û)

(4)

where An, Bn, Cn, Dn denote the Jacobians ∂ f
∂x , ∂ f

∂u , ∂g
∂x , ∂g

∂u at time instance Tn respectively. The error in the outputs
at the end of the macro-step can therefore be calculated as

∆yn+1 = yn+1− ŷn+1 = Cn (xn+1− x̂n+1)+Dn (un+1− ûn+1) (5)

In order to calculate the necessary state error (xn+1− x̂n+1) at the end of the macro-step we need to solve the state
error differential equation. A solution on the interval t ∈ (Tn,Tn+1) can be given as

xn+1− x̂n+1 = eAn(Tn+1−Tn) (xn− x̂n)+
∫ Tn+1

Tn

eAn(Tn+1−τ)Bn (u(τ)− û(τ))dτ (6)

Since we are interested in the local error, that is the error induced in a single macro-step, we assume the exact and
the biased state vector to be equal at the beginning of the macro step, which eliminates the first term in equation 6
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since given this assumption xn− x̂n = 0. In order to obtain a simple solution to the convolution integral in the
second term, for now we assume that both the estimated and exact inputs are kept constant for the duration of the
macro-step, which results in

xn+1− x̂n+1 =
(

eAn∆T − I
)

A−1
n Bn (un+1− ûn+1) = Bdn (un+1− ûn+1) (7)

which is the zero-order hold, discrete time equivalent. Inserting eqn. 7 in eqn. 5 finally yields an estimate for the
local error in the outputs due to the coupling error induced in the inputs as

∆yn+1 ≈ yn+1− ŷn+1 = (CnBdn +Dn)(un+1− ûn+1) (8)

Together with the coupling equation
un+1 = Lyn+1 (9)

eqn. 8 can be solved directly in order to obtain the corrected outputs yn+1 from the biased inputs and outputs as

yn+1 ≈ (I− (CnBdn +Dn)L)−1 (ŷn+1− (CnBdn +Dn) ûn+1) (10)

3.2 Correction of the Error in the States

Applying eqn. 10 only corrects the error in the outputs after the macro-step but not the error induced in the states
of the subsystems themselves. Since recalculation of the macro-step using the corrected outputs is not possible in
explicit co-simulation, the next best thing is to correct the error in the states during the next macro-step by using
an energy correction scheme (cf. NEPCE [9] e.g with feed-through correction [17]). The basic idea is to calculate
the error integral between the estimated inputs and the exact inputs (based on the corrected outputs). This error
integral, which can be interpreted as a sort of generalized energy, is compensated by a corresponding offset δu to
the inputs during the next macro-step.

ûc,n+2 = ûn+2 +δun+2 (11)

Assuming constant correction the therefore constant offset for the next macro step can be calculated as

δun+2 =
α

∆T

∫ Tn+1

Tn

(u(τ)− û(τ))dτ (12)

where α denotes a scaling factor. As stated before we assume the estimated inputs û(τ) to be constant, while in
contrast to before, the exact inputs u(τ) are estimated using linear interpolation. Using these assumptions together
with the coupling equation u = Ly, eqn. 12 can be written as

δun+2 =
α

∆T

(
∆T L

yn +yn+1

2
−∆T ûn+1

)
= α

(
L

yn +yn+1

2
− ûn+1

) (13)

Applying additional feed-through correction (see [17]), eqn. 13 results in

δun+2 = α (I−LDn)
−1
(

L
yn +yn+1

2
− ûn+1

)
(14)

Finally the overall algorithm for one macro-step Tn→ Tn+1 looks as follows:

• calculate the estimated inputs ûn+1 using some extrapolation scheme, e.g. ZOH: ûn+1 = Lyn

• apply the correction offset from the previous time-step as ûc,n+1 = ûn+1 +δun+1

• let the individual subsystems calculate the macro-step using the estimated and corrected inputs ûc,n+1

• retrive the biased outputs ŷn+1 from the subsystems

• correct the outputs using eqn. 10: yn+1 ≈ (I− (CnBdn +Dn)L)−1 (ŷn+1− (CnBdn +Dn) ûc,n+1)

• calculate the correction offset for the next macro-step: δun+2 = α (I−LDn)
−1 (L yn+yn+1

2 − ûc,n+1
)

6



4 A Short Introduction to Sub-Space Identification

As stated in the previous section a linear representation of the system in form of the Jacobians ∂ f
∂x , ∂ f

∂u , ∂g
∂x , ∂g

∂u at time
instance Tn or better yet in form of the discrete transition matrices Bdn , Cn, Dn is necessary, in order to estimate and
correct the local coupling error. In principle the FMI for co-simulation 2.0 standard allows the calculation of these
directional derivatives [18], but only a few tools commonly used in the automotive industry currently support this
feature.

Therefore if the Jacobians are not provided they can be estimated using a MOESP subspace identification ap-
proach [20] which works on a small batch of previously observed input and output data. In contrast to the more
common prediction error methods, e.g. least squares estimation of an ARX model [21], subspace identification
methods avoid a priori parameterization like number of poles, zeros and dead time, which gets especially tricky for
MIMO systems. In addition subspace techniques are inherently MIMO capable, can handle unstable systems and
non-zero initial states. Furthermore the used MOESP method is based on robust numerical operations like QR and
singular value decomposition (SVD) [22], which makes them ideal for an automated and user friendly coupling
algorithm. Apart from the model-based corrector approach presented in this paper, this technique can also be used
to support all other model-based coupling algorithms like PLC or NEPCE with feed-through correction when no
model knowledge is available.

4.1 Data and System Matrices

All subspace identification algorithms like N4SID [23], CVA or MOESP [20] are based on a discrete LTI model
in state space form, which is repeated for multiple successive time-steps. Since in this case simulation data is used
for identification, noise is not an issue and the noise terms can be omitted. The resulting state space equation can
be given as

yn = Cdxn +Ddun xn+1 = Adxn +Bdun

yn+1 = Cdxn+1 +Ddun+1 xn+2 = Adxn+1 +Bdun+1

= CdAdxn +CdBdun +Ddun+1 = A2
dxn +AdBdun +Bdun+1

yn+2 = Cdxn+2 +Ddun+2 xn+2 = Adxn+2 +Bdun+2

= CdA2
dxn +CdAdBdun +CdBdun+1 +Ddun+2 = A3

dxn +A2
dBdun +AdBdun+1 +Bdun+2

...
...

(15)

Writing the output equations of eqn. (15) in matrix form for k time-steps yields
yn

yn+1
yn+2

...
yn+k−1

=


Cd

CdAd
CdA2

d
...

CdAk−1
d

xn +


Dd

CdBd Dd
CdAdBd CdBd Dd

...
. . . . . .

CdAk−2
d Bd . . . CdBd Dd




un

un+1
un+2

...
un+k−1


yn|n+k−1 = ΓΓΓk xn + ΨΨΨk un|n+k−1

(16)

where ΓΓΓk denotes the extended observability matrix, ΨΨΨk denotes the Toepliz matrix and yn|n+k−1 and un|n+k−1
hold the k consecutive outputs and inputs respectively. Therefore k also denotes the number of block rows in ΓΓΓk,
yn|n+k−1 and un|n+k−1 and both the number of block rows and block columns in ΨΨΨk. Note that the index indicates
the first and the last time-sample in the data vector, separated by |. By repeating eqn. (16) for N consecutive
samples, where N is sufficiently large, we get

Yn|n+k−1 = ΓΓΓkXn +ΨΨΨkUn|n+k−1 (17)
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where Xn denotes the state sequence given as

Xn =
[
xn xn+1 . . . xn+N−1

]
(18)

and Yn|n+k−1 and Un|n+k−1 denote the Block Hankel matrices of the outputs and inputs, given e.g for the outputs as

Yn|n+k−1 =
[
yn|n+k−1 yn+1|n+k . . . yn+N−1|n+k+N−2

]

=


yn yn+1 . . . yn+N−1

yn+1 yn+2 . . . yn+N

yn+2 yn+3 . . . yn+N+1
...

...
. . .

...
yn+k−1 yn+k . . . yn+k+N−2


(19)

where the index indicates the first and the last time sample in the first block column, since the number of block
rows k is relevant, while the number of block columns e.g. samples N just have to be sufficiently large, but has no
impact on the algorithm otherwise. The size of the necessary data window therefore results in K = k+N−1.

The basic idea of subspace identification is, that in order to derive the state space model it is sufficient to know
either the column space of ΓΓΓk or the row space of Xn. The exact numerical values are not necessary since the state
space model is not unique but the subspaces spanned by the rows of Xn and the columns of ΓΓΓk are invariant [24].
Therefore, only the pair ΓΓΓkXn is needed form eqn. (17), which can be derived from observed input and output data
by matrix projections.

4.2 The MOESP Algorithm

A quick access to the MOESP algorithm [25] (Multivariable Output Error State sPace) as proposed by Verha-
gen [20] starts from a matrix formulation of eqn. (17) and a corresponding LQ decomposition of the form[

Un|n+k−1
Yn|n+k−1

]
=

[
I 0

ΨΨΨk ΓΓΓk

][
Un|n+k−1

Xn

]
=

[
L11 0
L21 L22

][
QT

1
QT

2

]
(20)

where QT
1 and QT

2 are orthogonal and L11,L22 are lower triangular matrices. Inserting the upper block row into the
lower block yields

Yn|n+k−1 = ΨΨΨkL11QT
1 +ΓΓΓkXn = L21QT

1 +L22QT
2 (21)

Note that the terms of the sum in the right part are orthogonal whereas the terms in the middle part are not neces-
sarily orthogonal, which implies that the summands themselves are not equal to one another. Furthermore it can be
seen, that the output data matrix Yn|n+k−1 is split into an orthogonal sum of the orthogonal projection of the row
space of Yn|n+k−1 onto the row space of the input data matrix Un|n+k−1 (first summand) and onto its complement
U⊥n|n+k−1 (second summand).

Multiplying by Q2 from the right yields

Yn|n+k−1Q2 = ΓΓΓkXnQ2 = L22 (22)

since QT
1 Q2 = 0 and QT

2 Q2 = I. In order to extract the row space of ΓΓΓk a singular value decomposition is applied
to eqn. (22), which is partitioned into a significant part and a non-significant or noise part.

L22 =
[
Us Un

][Ss 0
0 Sn

][
VT

s
VT

n

]
(23)

If the input and output data used for identification is derived from a noise-free linear model the number of signif-
icant singular values corresponds with the order of the source model and the non-significant singular values are
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zero. If the source model is non-linear the non-significant singular values are non-zero since they now contain the
non-linearities. The desired order of the estimated state space model can then be chosen either directly by the user
or by some heuristic e.g. based on the absolute values or the difference between the singular values. Either way, an
estimate for the extended observability matrix of the desired order with the corresponding row space can be given
as

ΓΓΓk = UsS
1/2
s (24)

From the definition of extended observability matrix the output matrix Cd can be directly seen from the first block
row. The state transition matrix Ad can be extracted via least squares from the shift structure of ΓΓΓk as

ΓΓΓkAd = ΓΓΓk (25)

where ΓΓΓk denotes ΓΓΓk without the last block row and ΓΓΓk denotes ΓΓΓk without the first block row respectively. In order
to derive the feed-through matrix Dd and the input matrix Bd , eqn.(21) is multiplied from the left by UT

n and from
the right by Q1 which yields

UT
n ΨΨΨkL11 = UT

n L21 (26)

since UT
n L22 = 0, UT

n ΓΓΓkXn = 0 and QT
1 Q1 = I. The result is an over-determined linear equation with the unknowns

Bd and Dd , which can be solved using least-squares. An efficient algorithm to solve this problem is given in [25].

Finally the overall MOESP algorithm looks as follows

• Compose the Block Hankel data matrices eqn.(19)

• Calculate the LQ decomposition eqn.(20)

• Calculate the SVD of L22 eqn.(23) and decide the order of the model

• Calculate the extended observability matrix ΓΓΓk eqn.(24)

• Derive Cd and Ad from ΓΓΓk eqn.(25)

• Derive Bd and Dd from eqn.(26)

5 Model Based Correction based on Sub-Space Identification

In order to derive a linear representation of the coupled system the presented MOESP algorithm is executed on
a window of adequate size K after every time step. A flow chart of the overall algorithm combining MOESP
identification and model based correction is depicted in figure 3. Although the Model Based Correction approach
is quite robust against moderate errors in the identified model, it is still susceptible to very poor identification. This
may happen due to insufficient excitation, wrong model order or non-linearities in the source model. Therefore
the quality of the identified model has to be assessed in order to apply countermeasures, if necessary. Furthermore
the identification process can be skipped if the identified model is still valid, reducing the overhead induced by the
identification process.

5.1 Quality Assessment

The quality of the identified model is evaluated by checking how good the model predicts the current time step,
by calculating the relative prediction error. In order to avoid explicit estimation of the state vector, a so called
Extended State Space Model (ESSM) [26] is used for prediction. The state space model eqn. (15) or (16) can
generally be written as

ŷn+1|n+k−1 = ÃAAkyn|n+k−2 + B̃BBkun|n+k−1 (27)
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Fig. 3: Flow chart of the overall coupling algorithm, where ”QA?” denotes the quality assessment of the previous or updated model and ”δT ?” denotes
whether micro-steps are available or not. Data and system matrices which are not based on the macro-step size ∆T are marked with a tilde.

where yn|n+k−1 and un|n+k−1 denote the known input and output data vectors respectively. Because the output data
vector mimics the function of the state vector, it is sometimes referred to as extended state vector. Note that the
equation on the right hand side shifts the output data matrix by one time-step, so that the predicted time step is
located in the lowest block row. The transition matrices ÃAAk and B̃BBk can be derived from the underlying state space
model eqn. (16) (see [27]):

ÃAAk = ΓΓΓkAd
(
ΓΓΓ

T
k ΓΓΓk
)−1

ΓΓΓ
T
k = ΓΓΓkAdΓΓΓ

†
k

B̃BBk =
[
ΓΓΓkBd ΨΨΨk

]
− ÃAAk

[
ΨΨΨk 0

] (28)

The fact that the ESSM is invariant against transformation of the underlying SSM (and therefore unique for a given
system which the SSM is not) and the reuse of data and system matrices used for identification make the ESSM
formulation uniquely suited in combination with subspace identification methods. Note that again ΓΓΓk is reduced
by the last block row and ΨΨΨk is reduced by both the last block row and block column compared to ΓΓΓk and ΨΨΨk
respectively, in order to reuse the data and system matrices used for identification with block row count k.

In order to predict the current time step, which is located in the lower right corner of the data matrix Yn|n+k−1
(see eqn. (19)), eqn. (27) is applied to the last block column of the input and output data matrices, which yields

ŷn+N|n+k+N−2 = ÃAAkyn+N−1|n+k+N−1 + B̃BBkun+N|n+k+N−2 (29)

Extracting the current true and estimated outputs from the last block row of yn+N|n+k+N−2 and ŷn+N|n+k+N−2
respectively, a relative error indicator can then be calculated according to

εεε i =
1

α

∣∣∣ yi
yi−ŷi

∣∣∣+ 1
β

ei =
1
√ny
||εεε i||2

(30)

where yi, ŷi denote the true and estimated output vector at sample i = n+ k+N−2 which represents the current
macro-step. The parameter α denotes a scaling factor which controls the point where modified and classical rel-
ative error are equal and β denotes an upper bound for the relative error. This slightly modified version of the
relative error converges towards the classical relative error if the error is small (for α = 1), but is bound by β if
the relative error gets ill defined. This relative prediction error is then compared to both the prediction error of
the previous model and the zero-order-hold prediction error. Both factors α ,β are tuned to fit the classical relative
error around the chosen threshold.

As can be seen in figure 3 the relative prediction error is calculated once using the previous model at the be-
ginning of the algorithm and then compared to a constant threshold defined by the user in order to decide whether
the model can be kept or has to be updated. After the identification step the relative prediction error is calculated
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again using the newly identified model. If the newly identified model performs worse than the previous model, the
previous model is kept for the correction step, although it violates the given error threshold. If both the previous
and new model perform worse than ZOH, the correction step is skipped and the algorithm therefore defaults to
energy correction alone, based on the biased outputs, which resembles the NEPCE algorithm in its simplest form.

5.2 Usage of Micro-Steps or Interpolated Data

As stated before the necessary minimal sample size for a given number of block rows k results in K = k+N−1.
In order to improve the identification result an being able to work with a smaller amount of makro-steps as usually
needed for the identification process, micro-steps can be included, if provided by the subsystem. Since micro-steps
are not necessarily equidistant across all subsystems or several macro-steps, e.g. if a variable step solver is used,
all available samples (macro- and micro-steps) must be interpolated to a common step-size. Since choosing this
interpolation step-size too small is equally bad as choosing the step-size to large, finding a good compromise can
be tricky. A simple practical approach is to take the interpolation step-size δTint as a fraction δTint =

1
r ∆T of the

macro-step size ∆T somewhere in the range of r = 2..10 [28].

Interpolation can also be used to create artificial data-points in order to fulfill the formal requirement towards
the minimal sample size, which can be helpful at the beginning of the simulation or with non-linear subsystems.
Of course neither micro-steps nor interpolation help with insufficient excitation in the input and output signals.

Constructing the input and output data matrices Ũn|n+k−1, Ỹn|n+k−1 based on the interpolation step-size δTint and
running the MOESP algorithm as usual consequently gives the discrete system matrices AdδT ,BdδT in the interpola-
tion step-size δTint . Since both the quality assessment and correction algorithms need the discrete system matrices
in the macro-step size ∆T , the result has to be transformed [28] using the relation[

Ad∆T Bd∆T

0 I

]
=

[
AdδT BdδT

0 I

] ∆T
δT

=

[
AdδT BdδT

0 I

]r
(31)

Because raising the power of the matrix is necessary it is good practice to choose the factor r as an integer value in
order to make computations more efficient.

6 Simulation Study

In a first step the algorithm developed in the previous chapters is now applied to a linear dual mass oscillator, which
is probably the most common test-model in literature. In a second step the dual mass oscillator will be modified
by adding a non-linear damper characteristic to the coupling spring-damper element.

In order to compare the performance of the different coupling schemes the following error norm is applied:

y∗ =
1
N

N

∑
i=1

y∗i

εεεn =
(yn−y∗n)√

1
N ∑

N
i=1 (y∗i −y∗)2

en =

√
1
ny
||εεεn||2

e =

√
1
N

N

∑
i=1

e2
n

(32)
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𝑑𝑑𝑘𝑘 𝑑𝑑2

𝑐𝑐2𝑐𝑐𝑘𝑘

𝑚𝑚2

𝑥𝑥2 =
𝑠𝑠2
𝑣𝑣2𝑢𝑢𝐼𝐼𝐼𝐼

𝑦𝑦𝐼𝐼𝐼𝐼 = 𝐹𝐹𝑘𝑘

𝑐𝑐1

𝑑𝑑1 𝑚𝑚1

𝑥𝑥1 =
𝑠𝑠1
𝑣𝑣1 = 𝑦𝑦𝐼𝐼

𝑢𝑢𝐼𝐼 force: 𝑢𝑢𝐼𝐼 = 𝑦𝑦𝐼𝐼𝐼𝐼

disp. 𝑦𝑦𝐼𝐼 = 𝑢𝑢𝐼𝐼𝐼𝐼

coupling:Subsystem 1 Subsystem 2

Fig. 4: Dual mass oscillator with force-displacement coupling

Here N denotes the number of macro-steps (number of samples) the simulation has run, ny denotes the number of
outputs and yn denotes the outputs calculated by the co-simulation method at macro-step n whereas y∗n denotes the
true outputs calculated by the closed form solution. The error norm therefore gives the global error. As can be seen
in eqn. 32 the error of all outputs is normalized by their respective empirical standard deviation. Taking the root
mean square of the normed error of the individual outputs yields a scalar error indicator for every macro-step n.
Taking the root mean square of all macro-steps finally yields the normalized root mean square error (NRMSE) of
the co-simulation method.

6.1 Linear Dual Mass Oscillator

For the linear test-model the two masses are separated into different subsystems using a force-displacement cou-
pling approach, as depicted in figure 4. In this example the coupling spring damper element is located in subsystem
II. Therefore subsystem I outputs its displacement and velocity whereas subsystem II returns the reaction force of
the spring damper element.

For subsystem I we get: [
ẋI

1
ẋI

2

]
=

[
0 1
− c1

m1
− d1

m1

][
xI

1
xI

2

]
+

[
0
1

m1

][
uI

1
]

ẋI = AIxI +BIuI[
yI

1
yI

2

]
=

[
1 0
0 1

][
xI

1
xI

2

]
+

[
0
0

][
uI

1
]

yI = CIxI +DIuI

(33)

For subsystem II we get: [
ẋII

1
ẋII

2

]
=

[
0 1

− ck+c2
m2

−dk+d2
m2

][
xII

1
xII

2

]
+

[
0 0
ck
m2

dk
m2

][
uII

1
uII

2

]
ẋII = AIIxII +BIIuII

[
yII

1
]
=
[
ck dk

][xII
1

xII
2

]
+
[
−ck −dk

][uII
1

uII
2

]
yII = CIIxII +DIIuII

(34)

For the coupling equation we get: uI
1

uII
1

uII
2

=

0 0 1
1 0 0
0 1 0

yI
1

yI
2

yII
1


u = Ly

(35)
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Parameter mass mi stiffness ci damping di init disp. s0,i init vel. v0,i

mass 1 10kg 1e6 N
m 1 Ns

m 0.1m 0 m
s

mass 2 10kg 1e7 N
m 2 Ns

m 0.1m 0 m
s

coupling - 2e5 N
m 2e2 Ns

m - -

Tab. 1: Parameters for the dual-mass oscillator test model

Obviously the force-response of subsystem II has direct feed-through, but because subsystem I has no direct-feed-
through in the output equation no algebraic loop exists. Both subsystems can be summarized together with the
coupling equation which yields the coupled systems in state space form:

ẋ = Ax+Bu
y = Cx+Du
u = Ly

(36)

The input, output and state vectors are summarized e.g. as x =
[
xI

1 xI
2 xII

1 xII
2
]T . The system matrices A,B,C

and D of the coupled system can then be written in block diagonal structure as

A =

[
AI 0
0 AII

]
,B =

[
BI 0
0 BII

]
C =

[
CI 0
0 CII

]
,D =

[
DI 0
0 DII

] (37)

For the simulation study the parameters given in table 1 are used for the dual-mass-oscillator, which is co-simulated
using macro-step sizes of ∆T = 1ms, 1.5ms, 2ms and 3ms. The model-based correction approach presented in this
paper is used with micro-steps included, macro-steps only and exact knowledge of the system jacobians. In addi-
tion NEPCE with feed-though correction [17] (and constant offset) and Parallel Linear Correction [16] are applied
for reference.

As can be seen in figure 5 the model-based corrector approach outperforms both NEPCE with feed-through correc-
tion and PLC across the range and produces only moderate errors even for relatively large step sizes until a certain
macro-step threshold is reached. The overall NRMSE of several macro-step sizes is given in table 2 . For moderate
macro-step sizes it can be seen that the use of system identification instead of the exact jacobians approximately
doubles the error. Still, even with the use the MOESP algorithm, the error produced by the model-based correction
approach is about five times less than the error produced by alternative coupling approaches. Furthermore it can
be observed, that the results for the case with makro-steps only and the case with micro-steps included converge
as the makro-step size is reduced. On the other hand if the macro-step size is increased, including the micro-

∆T 0.5ms 1.0ms 1.5ms 2ms 2.5ms 3ms 4ms

NEPCE-FT 0.161 0.392 0.764 1.433 2.754 5.381 17.893

PLC 0.131 0.299 0.518 0.797 1.141 1.513 2.456

MBCorr exact 0.009 0.029 0.052 0.080 0.129 0.235 0.945

MBCorr macro-steps 0.031 0.114 0.116 0.467 0.484 0.734 4.026

MBCorr micro-steps 0.025 0.047 0.102 0.185 0.241 0.270 1.255

Tab. 2: NRMSE of the linear dual mass oscillator for different macro-step sizes
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(a) Force response for ∆T = 1ms (b) Normalized error for ∆T = 1ms

(c) Force response for ∆T = 1.5ms (d) Normalized error for ∆T = 1.5ms

(e) Force response for ∆T = 2.0ms (f) Normalized error for ∆T = 2.0ms

(g) Force response for ∆T = 3.0ms (h) Normalized error for ∆T = 3.0ms

Fig. 5: force response and error for different coupling schemes and step sizes for the linear dual mass oscillator.
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∆T 0.5ms 1.0ms 1.5ms 2ms 2.5ms 3ms 4ms

NEPCE-FT 0.183 0.449 0.886 1.679 3.224 5.766 14.78

PLC 0.150 0.336 0.573 0.850 1.157 1.439 2.293

MBCorr exact 0.018 0.047 0.087 0.114 0.163 0.260 0.963

MBCorr macro-steps 0.032 0.206 0.105 2.886 0.442 0.826 4.221

MBCorr micro-steps 0.027 0.050 0.082 0.138 0.199 0.244 1.119

Tab. 3: NRMSE of the non-linear dual mass oscillator for different macro-step sizes

steps greatly improves the result and keeps the performance of the model-based corrector approach close to the
maximum possible performance when the jacobians are known.

6.2 DMO with Non-Linear Damper Characteristic

In order to examine the effects of non-linearity, the damping constant dk of the spring-damper element in subsystem
II is now replaced by a variable damping factor dknl (t) given by

dknl (t) = min
(

dk
(∣∣xII

2 −uII
2
∣∣) 2

(1+2nd)−1 ,dkmax

)
(38)

where the non-linearity factor nd is set to 1.5. To avoid numerical problems if the velocities of the two masses
are very similar, the damping factor is limited by dkmax = 1e5. The remaining dual mass oscillator and the used
parameters are left unchanged. The same macro-step sizes and co-simulation methods are used as with the linear
dual mass oscillator. The force response and NRMSE is displayed in figure 6 .

Same as with the linear dual mass oscillator the model-based corrector outperforms NEPCE with feed-through
correction and PLC, where the availability of micro-steps is especially valuable for larger macro-step sizes. The
overall NRMSE of several macro-step sizes is given in table 3 . It can be seen, that for the non-linear test case
the difference between the usage of the exact jacobians and the usage of system identification is not as evident as
with the linear DMO. The convergence for the cases with and without usage of the micro-steps is still given for
the non-linear test case. Likewise, the use of micro-steps is vital in order to get good results if the macro-step size
increases.

7 Conclusions and Outlook

In this paper a model-based correction algorithm for non-iterative co-simulation was derived and applied to a dual-
mass oscillator with linear and non-linear spring-damper characteristic. Because the necessary jacobians of the
subsystems are often not available, an algorithm based on MOESP subspace identification was introduced in order
to estimate these jacobians from observed input/output data. As a result the overall coupling algorithm has min-
imal requirements in terms of tool interfaces, although the availability of micro-steps helps a lot with the system
identification part, especially with non-linearity in the subsystems or relatively large macro-steps. It was shown
that the model-based coupling algorithm performs well for all three modes of operation (exact knowledge of the
jacobians, identification including micro-steps and identification using macro-steps only), for both linear and non-
linear subsystems.

In the further process, the influence of non-linearity on the performance of the coupling algorithm as well as
the influence of the identification window size will be investigated further. Finally, the coupling algorithm will be
applied to real-life co-simulation problems from the industry.
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(a) Force response for ∆T = 1ms (b) Normalized error for ∆T = 1ms

(c) Force response for ∆T = 1.5ms (d) Normalized error for ∆T = 1.5ms

(e) Force response for ∆T = 2.0ms (f) Normalized error for ∆T = 2.0ms

(g) Force response for ∆T = 3.0ms (h) Normalized error for ∆T = 3.0ms

Fig. 6: Force response and normalized error for different coupling schemes and step sizes for the non-linear dual mass oscillator.
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