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ABSTRACT — Besides the wide range of potential applications in the field of multidisciplinary 

simulations, co-simulation techniques may also be utilized to parallelize large monodisciplinary 

dynamical models. This paper focuses on the reduction of computation time that can be achieved in 

the simulation of multibody systems by partitioning a monolithic model into a variable number of 

coupled subsystems. The connection between the subsystems can be described in various ways. In 

this work, different subsystems are coupled by nonlinear constitutive equations (applied-force 

coupling approach). Exchange of coupling information takes only place at distinct macro-time 

points. The essential point is that the subsystems are integrated independently of each other between 

the macro-time points. If a Jacobi-type co-simulation scheme is used, all subsystems can be solved 

in parallel. 

1 Introduction 

Co-simulation or solver coupling methods are used in various fields of applications. Examples can be found in [1] 

and [2]. The basic idea of co-simulation is to decompose an overall system into coupled subsystems. The 

formulation of the coupling conditions between two (or several) subsystems depends on the considered problem. 

In the case of mechanical systems, the decomposition of an overall model may be achieved by cutting through 

joints or by cutting through elements representing a physical force (torque). This leads to a coupling by reaction 

forces/torques [3][4] (constraint coupling) or to a connection by applied forces/torques (applied-force coupling). 

Co-simulation methods may further be subdivided into force/force-, force/displacement- and 

displacement/displacement-coupling approaches [5]. In this contribution, a force/force-decomposition approach 

is used and the subsystems are connected by nonlinear spring/damper-elements. 

The methods presented here are weak coupling approaches, which implies that each subsystem is solved 

independently from the other subsystems within a macro-time step. Information (i.e. coupling variables) is only 

exchanged between the subsystems at certain communication-time points. The unknown coupling variables are 

approximated (extrapolated/interpolated) in the subsystems within a macro-time step. The independent integration 

of the subsystems within the macro-time steps is the essential point for parallelizing the computation. 

In this manuscript, two different numerical methods for solving the coupled problem are examined: an explicit 

co-simulation technique and a semi-implicit integration scheme. The semi-implicit method is based on a 

predictor/corrector procedure, where the corrector step is carried out only once. 

2 Co-Simulation Methods 

To investigate the performance of explicit and semi-implicit co-simulation approaches with regard to the 

computation time, we use a nonlinear dynamical test model, which is described in the following subsection. 
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2.1 Test Model 

One requirement for the test model is that it is straightforward to scale with respect to the number of degrees 

of freedom and with regard to the number of subsystems. Therefore, a chain of 𝑛𝐾 masses connected by nonlinear 

spring/damper-elements is used as test model. 

 

Fig. 1: Nonlinear test model: oscillator chain 

Denoting the displacements of the oscillator-masses by the displacement coordinates 𝑥𝑖 and the corresponding 

velocities by 𝑣𝑖, we obtain a system of 2𝑛𝐾 ordinary differential equations of the form  

�̇�𝑖 = 𝑣𝑖 

�̇�𝑖 =
𝑐𝑖

𝑙

𝑚𝑖

(𝑥𝑖−1 − 𝑥𝑖) +
𝑑𝑖

𝑙

𝑚𝑖

(𝑣𝑖−1 − 𝑣𝑖) +
𝑐𝑖+1

𝑙

𝑚𝑖

(𝑥𝑖+1 − 𝑥𝑖) +
𝑑𝑖+1

𝑙

𝑚𝑖

(𝑣𝑖+1 − 𝑣𝑖) 

+
𝑐𝑖

𝑛𝑙

𝑚𝑖

(𝑥𝑖−1 − 𝑥𝑖)3 +
𝑑𝑖

𝑛𝑙

𝑚𝑖

(𝑣𝑖−1 − 𝑣𝑖)3 +
𝑐𝑖+1

𝑛𝑙

𝑚𝑖

(𝑥𝑖+1 − 𝑥𝑖)3 +
𝑑𝑖+1

𝑛𝑙

𝑚𝑖

(𝑣𝑖+1 − 𝑣𝑖)3 

with 𝑖 = 1. . . 𝑛𝐾. We assume that the chain is fixed at both ends (𝑥0 = 𝑣0 = 𝑥𝑛𝐾+1 = 𝑣𝑛𝐾+1 = 0). The model 

parameters are the masses 𝑚𝑖, the linear stiffness coefficients 𝑐𝑖
𝑙, the linear damping coefficients 𝑑𝑖

𝑙, the nonlinear 

stiffness coefficients 𝑐𝑖
𝑛𝑙 and the nonlinear damping coefficients 𝑑𝑖

𝑛𝑙. 

2.2 Decomposition of the Test Model 

As mentioned above, the overall system is split into coupled subsystems by a force/force-decomposition 

approach [5]. This is achieved by cutting through certain nonlinear spring/damper-elements and by using the 

corresponding forces as coupling variables. The number of subsystems 𝑛𝑠𝑢𝑏 is arbitrary, but usually much smaller 

than the number 𝑛𝐾 of degrees of freedom of the overall system. 

 

Fig. 2: Arbitrary subsystem 𝐿 

The set of 𝑛𝑆 equations of motion for the arbitrary subsystem 𝐿 reads as 

 

 

 



3 

 

�̇�𝑗 
𝐿 = 𝑣𝑗 

𝐿  

�̇�𝑗 
𝐿 =

𝑐𝑗
𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑥𝑗−1 

𝐿 − 𝑥𝑗 
𝐿 ) +

𝑑𝑗
𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑣𝑗−1 

𝐿 − 𝑣𝑗 
𝐿 ) +

𝑐𝑗+1
𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑥𝑗+1 

𝐿 − 𝑥𝑗 
𝐿 ) 

+
𝑑𝑗+1

𝑙
 

𝐿

𝑚𝑗 
𝐿 ( 𝑣𝑗+1 

𝐿 − 𝑣𝑗 
𝐿 ) +

𝑐𝑗
𝑛𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑥𝑗−1 

𝐿 − 𝑥𝑗 
𝐿 )

3
+

𝑑𝑗
𝑛𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑣𝑗−1 

𝐿 − 𝑣𝑗 
𝐿 )

3
 

+
𝑐𝑗+1

𝑛𝑙
 

𝐿

𝑚𝑗 
𝐿 ( 𝑥𝑗+1 

𝐿 − 𝑥𝑗 
𝐿 )

3
+

𝑑𝑗+1
𝑛𝑙

 
𝐿

𝑚𝑗 
𝐿 ( 𝑣𝑗+1 

𝐿 − 𝑣𝑗 
𝐿 )

3
−

𝜆𝑗 
𝐿

𝑚𝑗 
𝐿

+
𝜆𝑗+1 

𝐿

𝑚𝑗 
𝐿

 

(1) 

with 𝑗 = 1. . . 𝑛𝑆 and 𝑐1
𝑙

 
𝐿 = 𝑑1

𝑙
 

𝐿 = 𝑐1
𝑛𝑙

 
𝐿 = 𝑑1

𝑛𝑙
 

𝐿 = 𝑐𝑛𝑆+1
𝑙

 
𝐿 = 𝑑𝑛𝑆+1

𝑙
 

𝐿 = 𝑐𝑛𝑆+1
𝑛𝑙

 
𝐿 = 𝑑𝑛𝑆+1

𝑛𝑙
 

𝐿 = 0. The coupling forces 

are denoted by 𝜆𝑗 
𝐿  and 𝜆𝑗+1 

𝐿 ; they are only required for the coupling bodies (𝑗 = 1 and 𝑗 = 𝑛𝑆) and are set to zero 

for the remaining bodies ( 𝜆2 
𝐿 = ⋯ = 𝜆𝑛𝑆 

𝐿 = 0).  

 

Fig. 3: Coupling of two adjacent subsystems 𝐿 and 𝑅 

The coupling condition for two adjacent subsystems 𝐿 and 𝑅 (assuming that body 𝑛𝑆 of subsystem 𝐿 is coupled 

with body 1 of subsystem 𝑅) is defined by 

𝑔 
𝐿𝑅 ≔ 𝜆 

𝐿𝑅 − 𝑐𝑐
𝑙

 
𝐿𝑅 ( 𝑥1 

𝑅 − 𝑥𝑛𝑆 
𝐿 ) − 𝑑𝑐

𝑙
 

𝐿𝑅 ( 𝑣1 
𝑅 − 𝑣𝑛𝑆 

𝐿 ) 

− 𝑐𝑐
𝑛𝑙

 
𝐿𝑅 ( 𝑥1 

𝑅 − 𝑥𝑛𝑆 
𝐿 )

3
− 𝑑𝑐

𝑛𝑙
 

𝐿𝑅 ( 𝑣1 
𝑅 − 𝑣𝑛𝑆 

𝐿 )
3

= 0 

(2) 

with the coupling force 𝜆 
𝐿𝑅 = 𝜆𝑛𝑆+1 

𝐿 = 𝜆1 
𝑅 , the coupling parameters 𝑐𝑐

𝑙
 

𝐿𝑅  , 𝑑𝑐
𝑙

 
𝐿𝑅  , 𝑐𝑐

𝑛𝑙
 

𝐿𝑅  and 𝑑𝑐
𝑛𝑙

 
𝐿𝑅  and the state 

variables of the two coupling bodies. 

2.3  Explicit Co-Simulation Scheme 

To solve the decomposed system as a coupled problem by using an explicit co-simulation method, a macro-

time grid is introduced. Within an arbitrary macro-step from 𝑇𝑁 to 𝑇𝑁+1 = 𝑇𝑁 + ℎ𝑚𝑎𝑐, each subsystem is 

integrated using extrapolation (interpolation) polynomials of degree 𝑛𝑝𝑜𝑙 to approximate the coupling forces. After 

the integration of the subsystems, the resulting states of the coupling bodies are substituted into the coupling 

condition (2) to obtain the coupling force at the new macro-time point 𝑇𝑁+1 (update of the coupling variables). 

The explicit co-simulation method has the advantage that a repetition of the macro-step is not necessarily required 

if a constant macro-step size is used (i.e. for the case that a macro-step size controller is not used). This may be 

an important point, if commercial subsystem solvers are used, which often do not allow solver reinitialization. 

The explicit co-simulation method may be improved by using a macro-step size controller. To estimate the 

error of a macro-step, a second subsystem integration process within each macro-step is required. For the second 

integration, the sampling point 𝜆𝑁+1
(𝑜)

 of the (original) approximation polynomial 𝜆(𝑜)(𝑡) of the coupling force at 

the new macro-point 𝑇𝑁+1 is modified. The modified value 𝜆𝑁+1
(𝑚)

 of the approximated coupling force is obtained 

by increasing the extrapolation order by one (𝑛𝑝𝑜𝑙 + 1). It has to be noted that the extrapolation order is only 

increased to obtain the modified value for the sampling point 𝜆𝑁+1
(𝑚)

, the polynomial order of the modified 

approximation polynomial 𝜆(𝑚)(𝑡) remains 𝑛𝑝𝑜𝑙. This process is illustrated for an arbitrary coupling force 𝜆 in 
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Fig. 4. To clarify the procedure of generating the approximation polynomial 𝜆(𝑚)(𝑡) for the error estimator, the 

equations to obtain the sampling points are presented in (3) and the corresponding approximation polynomials in 

(4). The abbreviation 𝑃𝑖 represents inter-/extrapolation polynomials of order 𝑖. 

Fig. 4: Approximation polynomials (linear) of an arbitrary coupling force 𝜆, green: original 

approximation polynomial, red: modified approximation polynomial for the error estimation 

The resulting states of the two subsystem integration processes (with the original and the modified approximation 

polynomial) are used to estimate the error 𝜀 of the macro-step according to the following equation  

𝜀 = √ ∑ ((
𝐶𝜀 ⋅ (𝑥𝑁+1,𝑖

(𝑜)
− 𝑥𝑁+1,𝑖

(𝑚)
)

atol𝑖 + rtol ⋅ 𝑥𝑁+1,𝑖
(𝑜)

)

2

)
coupling

 bodies

 .  (5) 

The error constant 𝐶𝜀 depends on the extrapolation order and the step sizes of the previous macro-steps. The 

position variables 𝑥𝑁+1,𝑖
(𝑜)

 and 𝑥𝑁+1,𝑖
(𝑚)

 are the displacements of body 𝑖 at 𝑇𝑁+1 obtained by the subsystem integration 

with the original and with the modified approximation polynomial of the coupling force. The error 𝜀 is the 

estimated local error on position level. An error estimator on velocity level can be constructed in the same way. 

The absolute and relative error tolerances atol𝑖 and rtol are user defined values. The new macro-step size is 

determined according to 

ℎ𝑚𝑎𝑐
𝑛𝑒𝑤 = 0.9 ⋅ 𝜀

− 
1

𝑛𝑝𝑜𝑙+3 ⋅ ℎ𝑚𝑎𝑐
𝑜𝑙𝑑  , (6) 

where 𝑛𝑝𝑜𝑙 + 3 is the convergence order of the co-simulation method on position level. A detailed description of 

this macro-step size controller can be found in [6]. 

2.4 Semi-Implicit Co-Simulation Scheme 

A detailed description of the implemented semi-implicit co-simulation procedure can be found in [5]. The 

basics of the approach are only briefly explained next.  

𝜆𝑁+1
(𝑜)

= 𝑃𝑛𝑝𝑜𝑙
([𝑇𝑁−𝑛𝑝𝑜𝑙

, 𝜆𝑁−𝑛𝑝𝑜𝑙
] , … , [𝑇𝑁, 𝜆𝑁], 𝑇𝑁+1) 

𝜆𝑁+1
(𝑚)

= 𝑃𝑛𝑝𝑜𝑙+1 ([𝑇𝑁−𝑛𝑝𝑜𝑙−1, 𝜆𝑁−𝑛𝑝𝑜𝑙−1] , … , [𝑇𝑁 , 𝜆𝑁], 𝑇𝑁+1) 

(3) 

𝜆
(𝑜)

(𝑡) = 𝑃𝑛𝑝𝑜𝑙
([𝑇𝑁−𝑛𝑝𝑜𝑙+1, 𝜆𝑁−𝑛𝑝𝑜𝑙+1] , … , [𝑇𝑁+1, 𝜆𝑁+1

(𝑜)
] , 𝑡) 

𝜆
(𝑚)

(𝑡) = 𝑃𝑛𝑝𝑜𝑙
([𝑇𝑁−𝑛𝑝𝑜𝑙+1, 𝜆𝑁−𝑛𝑝𝑜𝑙+1] , … , [𝑇𝑁+1, 𝜆𝑁+1

𝑚
], 𝑡) 

(4) 

𝑇𝑁−1 𝑇𝑁 𝑇𝑁+1 

𝜆𝑁+1
(𝑚)

 

𝜆𝑁+1
(𝑜)

 

𝜆𝑁 

𝜆𝑁−1 

𝜆𝑁−2 

𝑇𝑁−2 

𝜆(𝑚)(𝑡) 

𝜆(𝑜)(𝑡) 
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The macro-time grid is assumed to be equidistant (macro-step size ℎ𝑚𝑎𝑐 = 𝑐𝑜𝑛𝑠𝑡.). As mentioned above, the 

presented semi-implicit co-simulation method is based on a predictor/corrector approach with only one corrector 

step. An arbitrary macro-time step from 𝑇𝑁 to 𝑇𝑁+1 is explained next for a co-simulation with two subsystems 𝐿 

and 𝑅 (assuming that body 𝑛𝑆 of subsystem 𝐿 is coupled with body 1 of subsystem 𝑅).  

Within the predictor step, each subsystem is integrated twice from 𝑇𝑁 to 𝑇𝑁+1: firstly with the predicted 

(extrapolated) coupling force 𝜆𝑝(𝑡) (= 𝜆𝑝
 

𝐿𝑅 = 𝜆𝑛𝑆+1
𝑝

 
𝐿 = 𝜆1

𝑝
 

𝑅 ) and secondly with the perturbed predicted coupling 

force 𝜆Δ(𝑡) (= 𝜆Δ
 

𝐿𝑅 = 𝜆𝑛𝑆+1
Δ

 
𝐿 = 𝜆1

Δ
 

𝑅 ). Note that for the reason of a concise representation, the subsystem indices 

have been omitted. The sampling point 𝜆𝑁+1
Δ  of the perturbed coupling force at 𝑇𝑁+1 is obtained by adding a small, 

user-defined perturbation Δ𝜆 to the sampling point 𝜆𝑁+1
𝑝

 of the predicted coupling force as given in (7). 

𝜆𝑁+1
𝑝

= 𝑃𝑛𝑝𝑜𝑙
([𝑇𝑁−𝑛𝑝𝑜𝑙

, 𝜆𝑁−𝑛𝑝𝑜𝑙
] , … , [𝑇𝑁 , 𝜆𝑁], 𝑇𝑁+1) 

𝜆𝑁+1
Δ = 𝜆𝑁+1

𝑝
+ Δ𝜆 

(7) 

𝜆𝑝
(𝑡) = 𝑃𝑛𝑝𝑜𝑙

([𝑇𝑁−𝑛𝑝𝑜𝑙+1, 𝜆𝑁−𝑛𝑝𝑜𝑙+1] , … , [𝑇𝑁+1, 𝜆𝑁+1
𝑝

], 𝑡) 

𝜆Δ
(𝑡) = 𝑃𝑛𝑝𝑜𝑙

([𝑇𝑁−𝑛𝑝𝑜𝑙+1, 𝜆𝑁−𝑛𝑝𝑜𝑙+1] , … , [𝑇𝑁+1, 𝜆𝑁+1
Δ

] , 𝑡) 

(8) 

With the predicted state variables 𝒛𝑝 and the perturbed predicted states 𝒛Δ at 𝑇𝑁+1, the partial derivatives of 

the states with respect to the coupling variables can be approximated by finite differences 

𝜕𝒛𝑐

𝜕𝜆
|

𝜆𝑁+1
𝑝

= lim
Δ𝜆→0

𝒛𝑐(𝜆Δ) − 𝒛𝑐(𝜆𝑝)

Δ𝜆
≈

𝒛𝑐
Δ − 𝒛𝑐

𝑝

Δ𝜆
 . (9) 

Note that partial derivatives only have to be calculated for the states 𝒛𝑐 of the coupling bodies. 

The approximated partial derivatives obtained in the predictor step are utilized to compute the improved 

(corrected) coupling force. Therefore, the coupling condition (2) is considered as a function of the coupling force 

𝜆 at 𝑇𝑁+1 and expanded in a Taylor series. Choosing 𝜆𝑁+1
𝑝

 as expansion point and neglecting higher-order terms 

𝒪(𝜆2), one obtains the linearized coupling condition 

𝑔𝑙𝑖𝑛(𝜆) ≔ 𝑔(𝜆𝑁+1
𝑝

) +
𝜕𝑔

𝜕𝜆
|

𝜆𝑁+1
𝑝

(𝜆 − 𝜆𝑁+1
𝑝

) 

= 𝜆𝑁+1
𝑝

− 𝑐𝑐
𝑙 ( 𝑥1

𝑝
 

𝑅 − 𝑥𝑛𝑠

𝑝
 

𝐿 ) − 𝑑𝑐
𝑙 ( 𝑣1

𝑝
 

𝑅 − 𝑣𝑛𝑠

𝑝
 

𝐿 ) − 𝑐𝑐
𝑛𝑙( 𝑥1

𝑝
 

𝑅 − 𝑥𝑛𝑠
𝑃

 
𝐿 )

3
− 𝑑𝑐

𝑛𝑙( 𝑣1
𝑝

 
𝑅 − 𝑣𝑛𝑠

𝑝
 

𝐿 )
3
 

+ [1 − 𝑐𝑐
𝑙 (

𝜕 𝑥1
𝑝

 
𝑅

𝜕𝜆
|

𝜆𝑁+1
𝑝

−
𝜕 𝑥𝑛𝑠

𝑝
 

𝐿

𝜕𝜆
|

𝜆𝑁+1
𝑝

) −  𝑑𝑐
𝑙 (

𝜕 𝑣1
𝑝

 
𝑅

𝜕𝜆
|

𝜆𝑁+1
𝑝

−
𝜕 𝑣𝑛𝑠

𝑝
 

𝐿

𝜕𝜆
|

𝜆𝑁+1
𝑝

) 

−3 𝑐𝑐
𝑛𝑙( 𝑥1

𝑝
 

𝑅 − 𝑥𝑛𝑠

𝑝
 

𝐿 )
2

(
𝜕 𝑥1

𝑝
 

𝑅

𝜕𝜆
|

𝜆𝑁+1
𝑝

−
𝜕 𝑥𝑛𝑠

𝑝
 

𝐿

𝜕𝜆
|

𝜆𝑁+1
𝑝

) 

−3 𝑑𝑐
𝑛𝑙( 𝑣1

𝑝
 

𝑅 − 𝑣𝑛𝑠

𝑝
 

𝐿 )
2

(
𝜕 𝑣1

𝑝
 

𝑅

𝜕𝜆
|

𝜆𝑁+1
𝑝

−
𝜕 𝑣𝑛𝑠

𝑝
 

𝐿

𝜕𝜆
|

𝜆𝑁+1
𝑝

)] (𝜆 − 𝜆𝑁+1
𝑝

) = 0  . 

(10) 

Solving equation (10) for the coupling force 𝜆 yields the corrected coupling force 𝜆𝑁+1
𝑐 . In general, the predicted 

state variables and the predicted coupling force will not fulfill the coupling condition. The corrected coupling 

force (together with the corrected state variables), however, fulfills at least the linearized coupling condition (10). 

The subsystem integration within the corrector step is carried out by making use of the corrected coupling force 

𝜆𝑐(𝑡) = 𝑃𝑛𝑝𝑜𝑙
([𝑇𝑁−𝑛𝑝𝑜𝑙+1, 𝜆𝑁−𝑛𝑝𝑜𝑙+1] , … , [𝑇𝑁+1, 𝜆𝑁+1

𝑐 ], 𝑡). 



6 

 

The corrected state variables together with the corrected coupling forces will in general not fulfill the nonlinear 

coupling conditions. To achieve consistent coupling forces, an update of the coupling forces at 𝑇𝑁+1 is useful. 

Therefore, the corrected state variables of the coupling bodies are substituted into the coupling condition (2) in 

order to calculate updated coupling forces. 

2.5 Subsystem Solver 

The subsystems are solved with the IDA solver from the SUNDIALS (Suite of Nonlinear and 

Differential/Algebraic Equation Solvers) package [7]. This implicit DAE solver is based on a variable-order 

variable-coefficient BDF implementation combined with either direct (sparse) or iterative methods for solving the 

linear system within the Newton iteration. For the present studies, the direct sparse linear solver (KLU [8]) is used. 

3 Remarks on the Computation Time 

3.1 Parallelized Computation 

Within a macro-step, each subsystem is integrated independently. Exchange of information takes only place 

before or after the subsystem integration processes. Therefore, all subsystems can be solved in parallel. The 

parallelized implementation is realized with a hybrid MPI-openMP code: each subsystem is executed by a MPI 

rank. The different integration processes of each subsystem within a macro-time step – these are the additional 

integrations for the error estimation in case that a macro-step size controller is used and the subsystems 

integrations with the perturbed coupling variables for the semi-implicit approach – are carried out in openMP 

threads that are spawned within each MPI rank (Fig. 5). The simulations for this work have been carried out on a 

high performance computer (Lichtenberg High Performance Computer of the TU Darmstadt) so that all subsystem 

integrations could be fully parallelized.  

 

Fig. 5: Parallelization scheme: a) explicit co-simulation (with macro-step size controller) and b) semi-implicit co-simulation 

Applying a parallel implementation, the simulation time is usually strongly reduced. The computation time 

for the co-simulation can be estimated by  

𝑇𝑐𝑜𝑠
(𝑒𝑥𝑝𝑙)

≈
𝑇𝑚𝑜𝑛

𝑛𝑠𝑢𝑏
𝑃 + 𝐶(𝑒𝑥𝑝𝑙)        and        𝑇𝑐𝑜𝑠

(𝑠𝑒𝑚𝑖)
≈ 2

𝑇𝑚𝑜𝑛

𝑛𝑠𝑢𝑏
𝑃 + 𝐶(𝑠𝑒𝑚𝑖)  , (11) 

where 𝑇𝑚𝑜𝑛 denotes the computation time of the monolithic model and 𝑛𝑠𝑢𝑏 the number of subsystems. 𝑃 

represents the scaling factor of the computation time of the multibody implementation with respect to the number 

of degrees of freedom. For typical multibody systems, the value of 𝑃 is between one and three, depending on the 

formulation of the equations of motion and the solving strategy. The overhead caused by the synchronization of 

parallel threads and additional calculations due to the co-simulation approach (e.g. solving equations (9) and (10) 
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for the semi-implicit method) is summarized in the parameter 𝐶. The formula for 𝑇𝑐𝑜𝑠 implies the assumption that 

the overall system is split into equal-sized subsystems, so that the integration times for the different subsystems 

are similar. 

3.2 Micro-Step Size Limitation 

Depending on the subsystem solver, there are different options to control the micro-step size (subsystem solver 

step size). The most obvious possibility is to enforce the subsystem solver to stop exactly at the end of each macro-

step (“exact stop”, 𝑡𝑠𝑢𝑏 = 𝑇𝑁+1). The problem with this option is that the step-size controller of the subsystem 

solver will be interrupted. This may lead to a significant increase of the number of micro-steps. A completely 

unrestricted micro-step size on the other hand is also undesirable, because then it can happen that the micro-step 

size of a subsystem is larger than the macro-step size. As a result, the subsystem will not be evaluated in each 

macro-step. 

Another possibility is to restrict the subsystem solver step size by the macro-step size (ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐) and to 

stop the solver when it steps beyond a macro-time point (𝑡𝑠𝑢𝑏 ≥ 𝑇𝑁+1). The states of the coupling bodies are 

interpolated at the macro-time point 𝑇𝑁+1. Within the next macro-step, the subsystem solver starts at the point 

𝑡𝑠𝑢𝑏 at which it has stopped before. In this case, the subsystem solver step size controller does not get affected by 

the co-simulation. However, the interval between the end of a macro-step 𝑇𝑁+1 and the point 𝑡𝑠𝑢𝑏 at which the 

solver stops is integrated with the coupling force from the previous macro-step. This leads to an additional 

numerical error and an increased discontinuity in the coupling force. In our simulations, we observed that the 

restriction ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐 yields good results.  

Fig. 6: Micro-step size limitation: a) ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐 and b) integration is stopped at each macro-time point exactly 

Fig. 6 shows the micro-step size of an arbitrary subsystem solver of an explicit co-simulation carried out with 

the two different micro-step size limitations. As can be seen, the micro-step size of the co-simulation in which the 

subsystem solver is stopped exactly at each macro-time point (Fig. 6b) shows large fluctuations. The average 

micro-step size is therefore smaller than for the co-simulation in which the micro-step size is restricted by ℎ𝑚𝑖𝑐 ≤

ℎ𝑚𝑎𝑐. 

3.3 Macro-Step Size 

Considering classical time integration methods, the numerical error decreases and the computation time 

increases when the time step size is reduced. For co-simulation methods, the numerical error also decreases with 
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the macro-step size, of course, but the relation of the computation time and the macro-step size is not necessarily 

as straightforward as for classical time integration methods. 

Assuming that the co-simulation is carried out in parallel, the overall computation time is the sum of the 

subsystem integration time (i.e. of the slowest subsystem integration process) and the time required for  

synchronization and data exchange between the subsystems. The macro-step size can affect both parts of the 

overall computation time. On the one hand, a larger macro-step size decreases the number of synchronization 

points and the data transfer between the subsystems; therefore, it reduces the computation time. On the other hand, 

a larger macro-step size increases the discontinuities in the coupling variables at the macro-time points. Because 

of these discontinuities, the subsystem solver has to reduce the micro-step size at the beginning of each macro-

step. As a result the overall computation time may increase. A small macro-step size will limit the micro-step size 

and therefore also increase the number of micro-steps and the overall computation time. 

For the determination of an appropriate macro-step size, it is necessary to know what the dominating part of 

the overall computation time is. If the bottleneck is the data transfer – this may be the case when there is a large 

number of subsystems or coupling variables – then the macro-step size should be chosen as large as possible. If 

the dominating factor of the computation time are the subsystem integration processes (which is mostly the case 

when multibody systems are coupled) then an appropriate macro-step size is a compromise between small 

discontinuities and minimal limitation of the micro-step size. 

3.4 Differences in Subsystem Computation Times 

The computation time of each subsystem solver within each macro-step varies between the subsystems. Even if 

all subsystems have approximately the same computation time for the overall simulation, as in our test case, there 

are different computation times for each subsystem in each macro-step as shown in Fig. 7b). The effect of these 

“local” computation time fluctuations on the overall computation time depends strongly on the macro-step size. 

Fig. 7 shows a detailed view of the computation time of an explicit co-simulation with a constant macro-step 

size. The subsystems are physically identical. The green bars show the computation time of each subsystem in 

each macro-step. The macro-steps are indicated by the black lines. The red bars mark the slowest subsystem 

integration process in each macro-step. 

In Fig. 7a) the macro-step size is chosen relatively large so that each subsystem solver makes many micro-

steps (~20-30) within each macro-step. The computation times of the subsystems within each macro-step are 

similar. 

Fig. 7b) shows results obtained with a reduced macro-step size. Here, the subsystem solver makes only a small 

number of micro-steps (~1-4) within each macro-step. This results in relatively large differences of the subsystem 

computation times. Considering that each subsystem is assigned to one core, the hardware utilization is low, 

because the cores are idling a large proportion of the time. 

The macro-step size in Fig. 7c) is assumed to be smaller than the micro-step size that is chosen by the step size 

controller of the subsystem solver. Due to the restriction ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐, the micro-step size is limited by the macro-

step size. Each subsystem solver takes only one micro-step per macro-step. As a result the computation time for 

all subsystems is almost equal. The price for the good hardware utilization is the increased number of micro-steps. 
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Fig. 7: Subsystem computation times for different macro-step sizes: a) ~20-30 micro-steps per macro-

step, b) ~1-4 micro-steps per macro-step, c) 1 micro-step per macro-step 
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4 Simulation Results 

 To investigate different co-simulation methods, the following two parameter sets for the test model are defined: 

 

Parameter Set 1 

(“model 1”) 

Parameter Set 2 

(“model 2”) 

𝑛𝐾 = 7750 

𝑛𝑠𝑢𝑏 = 47 

𝑚𝑖 = 1.0𝑒0 

𝑐𝑖
𝑙 = 𝑐𝑐𝑖

𝑙 = 1.0𝑒7 

𝑑𝑖
𝑙 = 𝑑𝑐𝑖

𝑙 = 1.0𝑒0 

𝑐𝑖
𝑛𝑙 = 𝑐𝑐𝑖

𝑛𝑙 = 1.0𝑒9 

𝑑𝑖
𝑛𝑙 = 𝑑𝑐𝑖

𝑛𝑙 = 1.0𝑒-2 

No external forces 

External forces 𝐹𝑆𝑖 

acting on 5% of all 

bodies 

Tab. 1: Test model parameters 

The external force 𝐹𝑆𝑖 is defined by the force law 

𝐹𝑆𝑖 =
1

2
Δ𝐹𝑆𝑖 [tanh (

𝑡 − 𝑡𝑖

𝛿
) − tanh (

𝑡 − (𝑡𝑖 + 𝛿)

𝛿
)] . 

This may be considered as an approximation of an impact force acting on body 𝑖 over a short time interval Δ𝑡 with 

an amplitude Δ𝐹𝑆𝑖 at 𝑡𝑖. The initial positions and velocities of the bodies are chosen randomly in the interval 

[−0.1, +0.1] and [−100, +100]. 

4.1 Convergence Analysis 

The convergence behavior of the explicit co-simulation method is investigated by varying the (constant) 

macro-step size and by evaluating the global and the local error of the state variables. 

Fig. 8 shows the results for the convergence analysis of model 1. Co-simulations are carried out with linear 

(blue curve) and quadratic (red curve) approximation polynomials for the coupling variables. The subsystem 

solver tolerance is set to 1.0e-12 to minimize the numerical errors that are introduced by the subsystem solvers. 

As can be seen, the local error converges with order 𝑛𝑝𝑜𝑙 + 3 on position level and with order 𝑛𝑝𝑜𝑙 + 2 on velocity 

level. The global error converges with 𝑛𝑝𝑜𝑙 + 1.  

When the subsystem solver tolerance is increased to 1.0e-6, the overall accuracy of the co-simulation is limited 

by the subsystem errors. This can be clearly observed for a co-simulation of model 2 with quadratic approximation 

polynomials for the coupling variables (Fig. 9 right hand side, red curve), where the error remains almost constant 

when the macro-step size is decreased below 1.0e-5. Due to the micro-step size restriction, the subsystem accuracy 

of model 1 is implicitly increased for small macro-step sizes; therefore, this effect cannot be observed very clearly 

for model 1. 

The dashed curves in Fig. 9 show the error of a co-simulation with the restriction that the subsystem solver 

stops exactly at each macro-time point. As expected, a co-simulation with this restriction produces slightly lower 

errors than a co-simulation with the limitation ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐. The black dashed lines in Fig. 9 show the errors of a 

monolithic simulations of both models for comparison. 
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Fig. 8: Convergence analysis: explicit co-simulation (subsystem error tolerance 1.0e-12) 

 

Fig. 9: Convergence analysis: explicit co-simulation (subsystem error tolerance 1.0e-6) 

The convergence order of the semi-implicit co-simulation method is the same as for the explicit method. The 

advantage of the semi-implicit approach are the smaller errors and the increased numerical stability. 

Fig. 10 shows a comparison of the numerical errors of the explicit (dashed curves) and the semi-implicit co-

simulation method. As can be seen, the error of the semi-implicit method is for both models significantly smaller, 

especially for large macro-step sizes. In addition, the macro-step size can be increased to ℎ𝑚𝑎𝑐 = 7.5e-5 for the 

semi-implicit method, while the explicit method needs a macro-step size of ℎ𝑚𝑎𝑐 ≤ 5.0e-5 with linear 

approximation polynomials or ℎ𝑚𝑎𝑐 ≤ 2.5e-5 with quadratic polynomials order to achieve a stable co-simulation. 

The black dashed lines in Fig. 10 show the error of monolithic simulations of the two models for comparison. The 

monolithic simulations are carried out with an error tolerance of 1.0e-6, the same error tolerance is used for the 

subsystem solvers.  
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Fig. 10: Convergence analysis: semi-implicit co-simulation (subsystem error tolerance 1.0e-6) 

4.2 Analysis of the Computation Time 

4.2.1 Computation Time of the Monolithic Simulation 

As mentioned before, the scaling factor of the computation time of a multibody system with respect to the 

number of degrees of freedom is typically between 1 and 3. There exist, for instance, recursive 𝒪(𝑛) algorithms 

[9] that scale linear. Generally, when the equations of motion are formulated in absolute coordinates and the 

system is integrated numerically with a BDF method, the dominating factor in the computation time is the linear 

system that has to be solved within the Newton iterations. The system matrices in our test cases are sparse, because 

of the simple structure of the test model. This sparsity is exploited by the KLU linear solver resulting in an almost 

linear scaling of the computation time for model 1. Model 2 is – because of the excitation by the impact forces – 

stronger affected by the nonlinearities. Therefore, more Newton iterations are needed in each solver step.  

Since the scaling factor of the computation time with respect to the degrees of freedom is higher for model 2 

– at least within the considered range of degrees of freedom – we expect also a greater benefit of a parallel co-

simulation for model 2. Fig. 11 shows the computation time of monolithic simulations of the two test models. The 

parameters are given in Table 1, only the number of masses 𝑛𝐾 is varied. 

 

Fig. 11: Monolithic simulation: scaling of the computation time with the number of degrees of freedom 
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4.2.2 Influence of the Number of Subsystems on the Computation Time 

The choice of the number of subsystems, in which a model should be subdivided for achieving the minimal 

computation time, depends on several aspects. It can be restricted by the topology of the model or limited by the 

available computer architecture. When there are no restrictions, it is a tradeoff between the reduction of the 

computation time of each subsystem due to the reduced subsystem size and the cost of the synchronization and 

data transfer between the subsystems.  

Fig. 12: Explicit co-simulation: computation time depending on the number of subsystems 

Fig. 12 shows the computation time of explicit co-simulations (𝑛𝑝𝑜𝑙 = 2, ℎ𝑚𝑎𝑐 = 1.0𝑒-5, ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐) with 

a various number of subsystems. The blue bars show the computation time of the subsystem solver and the red 

bars the overhead. As expected, the solver time per subsystem decreases as the number of subsystems increases. 

The overhead that appears in co-simulations of model 2 with a small number of subsystems results from 

different subsystem integration times within each macro-step (cf. Fig. 7b). For model 1, the subsystem solver 

usually makes one micro-step per macro-step (cf. Fig. 7c). Therefore, the integration times of all subsystems are 

almost equal in each macro-step. The number of micro-steps for model 1 is – mainly because of the micro-step 

size limitation – almost doubled compared to the monolithic simulation. Hence, a co-simulation with three 

subsystems takes about 60% of the computation time of the monolithic simulation instead of the 33% that would 

be expected. 

When the number of subsystems is increased over a certain level, the overhead caused by network traffic and 

synchronization becomes the dominating factor of the overall computation time. 

4.2.3 Influence of the Macro-Step Size on the Computation Time 

The following results are obtained by co-simulations with 47 subsystems. Fig. 13 shows the computation time 

as a function of the macro-step size of explicit co-simulations of both test models with quadratic approximation 

polynomials for the coupling variables. The qualitative observation is the same for both models. When the 

limitation ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐 is applied, the computation time decreases as the macro-step size is decreased until it 
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reaches a minimum. This is the optimal macro-step size, at which the discontinuities in the coupling variables are 

small and the macro-step size is large enough to not interfere with the micro-step size. When the macro-step size 

is decreased further, the micro-step size will be restricted by the macro-step size resulting in an increased 

computation time. 

The computation time (Fig. 13 dashed curves) of co-simulations with the restriction that the subsystem 

integration stops at each macro-time point exactly behaves different. In this case, the key point is that the step size 

controller of the subsystems solver is interrupted at each macro-time point. Therefore, the computation time 

increases as the macro-step size is decreased. The optimal macro-step size is when the subsystem solver takes one 

micro-step per macro-step. When the macro-step size is reduced beyond this point, the computation time increases 

again.  

To clarify the influence of the discontinuities in the coupling variables that result from a large macro-step size, 

Fig. 14 shows the average number of Newton iterations of the subsystem solvers for the co-simulation of model 

1. If linear approximation polynomials for the coupling variables are used, the effect of the discontinuities on the 

computation time is stronger. The average number of Newton iterations for an explicit co-simulation with a macro-

step size of 2.5e-5 is more than 3 times larger than for a co-simulation with a macro-step size of 7.5e-6.  

 

Fig. 13: Explicit co-simulation: computation time as a function of the macro-step size 

 

Fig. 14: Effect of the discontinuities in the coupling variables on the number of Newton iterations of the subsystem solver 
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4.2.4 Macro-Step Size Controller 

Fig. 15 shows the number of macro-steps of an explicit co-simulation with quadratic approximation 

polynomials. The co-simulation with a constant macro-step size is carried out with ℎ𝑚𝑎𝑐 = 1.0𝑒-5. The error 

tolerances of the macro-step size controller are chosen in such a way that the global numerical error of both 

simulations is of the same order of magnitude. The usage of the macro-step size controller reduces the number of 

macro-steps for both models significantly. For model 2 the number of macro-steps is reduced by about 25% and 

for model 1 it reduced by more than 50%. Especially for co-simulations where the dominating factor of the 

computation time is the data transfer between the subsystems, the macro-step size controller may reduce the 

computation time significantly.  

 

Fig. 15: Explicit co-simulation with macro-step size controller: number of macro-steps 

5 Conclusions 

The analysis and the reduction of the computation time using a parallel implementation of a Jacobi-type co-

simulation is a challenging task because it is influenced by many factors. Besides the computational aspects like 

data transfer and thread synchronization in parallel computing, also the effect of the particular co-simulation 

method on the subsystem solvers plays an important role. 

In this manuscript, two co-simulation methods, namely an explicit and a semi-implicit method have been 

utilized to parallelize the computation of a multibody system. The convergence behavior has been analyzed in 

detail. Although both methods have the same convergence order, the errors of the semi-implicit co-simulation 

approach are significantly smaller than for the explicit approach, especially for larger macro-step sizes. The semi-

implicit method shows also a better numerical stability. The main drawback of the semi-implicit co-simulation 

method is that each macro-step has to be repeated and in addition, partial derivatives with respected to the coupling 

variables have to be computed. For the explicit co-simulation method, a macro-step size controller based on an 

error estimator has been implemented. It has been shown that the number of macro-steps can be reduced 

significantly without increasing the numerical error with the help of a macro-step size controller. 

In addition, a detailed computation time analysis of the co-simulation methods has been carried out. The effect 

of different parameters on the overall computation time has been studied. It was pointed out, that the choice of an 

appropriate macro-step size is a delicate matter because it affects all parts of the overall computation time. 

Depending on the particular model, the macro-step size may be chosen rather large to minimize the computational 

effort for data traffic and thread synchronization. For other models, for example our test model, it may be 

advantageous to choose a smaller macro-step size in order to reduce the discontinuities in the coupling variables 

and therefore reduce the subsystem computation time. Also, the macro-step size should be chosen large enough 

so that it does not limit the micro-step size. Assuming that each subsystem is attached to a fixed number of cores, 

the hardware utilization is affected by the macro-step size, too. A suitable restriction for the micro-step size is 
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ℎ𝑚𝑖𝑐 ≤ ℎ𝑚𝑎𝑐. The alternative, namely to stop the subsystem solver at each macro-time point exactly, is not 

practicable because of its negative effect on the subsystem computation time. Another important point is the choice 

of the number of subsystems. A proper number of subsystems is always a compromise between reducing the 

subsystem integration time on the one hand, and increasing overhead due to data traffic and thread synchronization 

on the other hand. 

It has been shown, that the computation time of nonlinear multibody systems can be reduced significantly 

without increasing the numerical error by applying a parallel co-simulation. 
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