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ABSTRACT — Multibody dynamics formulations have been successfully applied in the analysis of 

mechanical systems, as they allow for an efficient modelling and simulation of complex structures. 

�ese formulations require the use of a set of parameters called generalized coordinates that uniquely 

defines the position and orientation of each body in space. Different multibody formulations can be 

found in literature, having its own advantages and limitations. 

�is work proposes a novel formulation, Fully Cartesian Coordinates, that presents a new kinematic 

structure, based on points and vectors, to describe a generic rigid body. �is concept eliminates the 

use of angular variables and body-dependent equations, two of the drawbacks of the most common 

formulations. �e assessment of the formulation is performed by applying it in the simulation of two 

classical mechanisms, a simple planar pendulum and a planar slider crank, and their results compared 

with benchmark data from IFToMM library. 

�e formulation enabled to model with success the mechanisms, generating constraint equations and 

contributions to the Jacobian matrix and the right-hand side vectors that are constant, linear or 

quadratic. When compared the results with the benchmark data, high agreement scores were found 

in the system coordinates for both pendulum (ICC = 1.000) and slider crank (ICC = 0.998). 

Fully Cartesian Formulation proved to be an interesting option in the modelling and analysis of 

multibody systems, due to the low degree of non-linearity of the equations it generates, high level of 

systematization of the model, intuitiveness and easiness of utilization and reliability and validity of 

the results. 

1. Introduction 

Classical formulations, based on analytical dynamics, have been used to describe simple mechanical systems. 

Although, these formulations tend to use a reduced set of coordinates, they generate highly non-linear equations, 

as well as they require a considerable user expertise to discretize the system and achieve a solution. On the other 

hand, formulations based on computational dynamics are a good approach for the systematization of the modeling 

process and analysis of medium and large systems. Within these formulations, multibody dynamics stand out, as 

they allow for an efficient description of mechanical systems, allowing the inverse and forward dynamic analysis 

of large systems. 

Multibody systems are described as a collection of bodies interconnected by kinematic pairs and acted upon 

by external forces. All these systems, without exception, require the use of a set of parameters that uniquely defines 

the position and orientation of each body during the period of analysis. �ese parameters are referred to as 

generalized coordinates. Ideally, a multibody formulation should be able to represent in a systematic form a given 

mechanical system with a minimum set of coordinates and it should generate kinematic constraints with a low 

degree of non-linearity, being simultaneously simple and fast to evaluate. However, we can hardly reconcile such 

characteristics in a single formulation, as so compromises have to be found. �e differences in the multibody 

formulations are essentially related with the total number of generalized coordinates necessary to model the system 

and the number and degree of non-linearity of the kinematic constraint equations that these generate. Hence, its 

selection has direct influence on the complexity of the problem to solve, on its computational performance, 

systematization ability, and, equally important, on the intuitiveness and easiness of utilization.  

Although several formulations are available in the literature, the most applied are the relative coordinates 

formulation (RCF) [1], the reference point coordinate formulation (RPCF) [2] also known as Cartesian 

coordinates and the natural coordinate formulation (NCF) [3].  



Relative coordinates use a minimal number of generalized coordinates per body and are particularly useful 

to represent the structure of open chain mechanisms. In this formulation, the position and the orientation of each 

body is defined with respect to an adjacent element and the equations of motion are compact but dense. 

Furthermore, if the multibody system is composed by several closed chains, the choice of the loop equations is a 

non-trivial task [1].  

RPCF or Cartesian Coordinates formulation is the most commonly methodology used in analysis of rigid 

multibody systems. These are a suitable choice for both open and closed chain mechanisms, since it directly 

defines the absolute position and orientation of each element of the system, regardless the motion of the adjacent 

model elements. In spatial systems, RPCF requires the use of six or seven generalized coordinates per body, 

depending if the formulation makes use of Euler angles or Euler parameters [2]. On the other hand, three 

generalized coordinates per body are required to describe the kinematics of planar systems. Usually, these are the 

cartesian coordinates of a point of the body (the reference point, which often is the center of mass (CoM) and an 

angle between its local reference frame and a system of inertial axes. In this way, although the RPCF needs a 

larger number of variables, when compared to RCF, it generates sparse matrices, which are usually more 

numerically efficient. Moreover, this formulation allows for a systematization of different mechanical systems, 

being also intuitive due to the nature of its coordinates. However, RPCF generates kinematic constraint equations 

with transcendental terms that are computationally expensive to evaluate [2]. 

NCF is an alternative formulation developed to avoid the computational problems reported for the RPCF and 

RCF. �is formulation uses only Cartesian coordinates of points, usually located at relevant positions of the body 

(e.g. joints and extremities), and vectors to define the bodies kinematic structure. �is is in fact the reason why 

these coordinates were originally referred to as Fully Cartesian coordinates. �e term Natural coordinates arose 

solely from the fact that, with the purpose of reducing the number of coordinates required to model a given system, 

points can be shared by different bodies. �erefore, several kinematic joints, such as the revolute joints in 2D and 

spherical in 3D, would appear ‘naturally’ without the need of an explicit joint definition, i.e. without the use of 

specific kinematic constraint equations [3]. Despite presenting the reported advantages, moving the generalized 

coordinates to relevant points introduces some intricacies. �e rigid body definition and the mass matrices vary 

with the specific structure of the modelled element. Additionally, with shared points, system matrices become 

coupled and since there is no explicit joint definition, reaction forces cannot be calculated directly from the 

equations of motion of the system [3]. When compared to Cartesian coordinates, NCF requires, on average, less 

coordinates if points are shared between bodies and generates kinematic constraint equations that are quadratic or 

linear in nature. However, and despite its simplicity, this formulation is less systematic than the Cartesian 

coordinates and its use far less intuitive.  

An alternative approach to modeling planar (2D) multibody systems is the Fully Cartesian Coordinates 

formulation (FCCF), based on a methodology previously presented in Gameiro et al. [4] and applied in Uhlar et 

al. and Pappalardo et al. [5], [6]. In this formulation the two major characteristics of Natural coordinates 

formulation are maintained, i.e., multibody systems are still described using only with Cartesian coordinates and 

kinematic constraint equations are still quadratic or linear, but the reported disadvantages are eliminated, i.e., the 

definition of the rigid bodies are not body-specific dependent and the matrices are not coupled due to points 

sharing. �is is accomplished by introducing the concept of a generic rigid body, which presents a predetermined 

kinematic structure. In planar motion, this body is defined by one point, located at its center of mass, and one unit 

vector. �e two Cartesian coordinates of the relevant point are used to describe rigid body translations and the two 

Cartesian coordinates of the unit vector its orientation. �e introduction of this generic rigid body presents several 

advantages regarding the formulation and systematization of the model, as it will be seen later in the paper. �e 

adoption of a constant rigid body structure brings the modeling approach closer to the one adopted with Cartesian 

coordinates and familiar to most users. 

Taking in consideration the advantages and disadvantages of each multibody formulation, this work aims the 

development of a novel formulation based on Fully Cartesian Coordinates. �e formulation characteristics will be 

explored, alongside with its strengths and disadvantages. In order to prove its reliability and validity, the proposed 

methodology was implemented in an in-house software, developed using Python language, being applied to 

perform a forward dynamics analysis of two simple mechanisms, respectively, a planar pendulum and a planar 

slider crank. �e results will be posteriorly compared with benchmark data for the same mechanisms. 

 

 

 



2. Methodology 

The present work is divided in two major sections, the first one comprises the theoretical framework behind the 

Fully Cartesian Coordinates formulation, namely the equations necessary to model any constrained multibody 

system, and the second one explores its application in the study of two IFToMM benchmark problems. Results 

obtained through a forward dynamics simulation will be compared with benchmark data through specific 

statistical procedures to prove formulation validity and reliability. 

2.1. Fully Cartesian Coordinates Formulation 

2.1.1. Kinematic structure of the generic Rigid Body 

Contrarily to the Natural Coordinates, Fully Cartesian coordinates introduce a new kinematic structure, which 

presents a general predetermined structure. �is fact allows for an easier systematization of the model 

implementation, avoiding the need of body-specific equations, and brings this formulation closer to the one 

adopted in RPCF from a modelling perspective. �is generic rigid body is defined by one point (point ��
� located 

at its center of mass), which describes the body translations, and one unit vector (��) to define its orientation (Fig. 

1). �erefore, the generalized coordinates of the body i (��) can be defined as: 

 { }q
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i i i i ir r U U=  (1) 

Where 
xi

r and 
yi

r  are the x and y coordinates of point ��
� and 

xi
U and 

yi
U  are the x and y components of vector 

�� . Since �� is defined as a unit vector, a unit module condition is introduced in the constraint equations (Φ ) to 

relate these two coordinates (see Tab. 1). One of the major advantages of FCCF is the efficient definition of an 

arbitrary point P as function of the coordinates of body i:  
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Fig. 1: Description of the generic rigid body in Fully Cartesian Coordinates 

In its turn, vector 
0' iPr  can be written also as a linear combination of the body i local reference frame: 

 
0' 1 2iP i ic c= +r U Uɶ  (3) 

where iUɶ  is a unitary vector normal to iU  and coefficients 1c  and 2c  are the local coordinates of a generic point

Pi  with respect to body i local reference frame ( 'i0 ). �erefore, the global coordinates of point Pi  can be 

computed directly from the generalized coordinates of body i:  
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where C
iP
 is a constant transformation matrix with dimensions 2x4: 
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Considering the first and second time derivatives of equation (4, the velocity (
pi

rɺ ) and acceleration(
pi

rɺɺ ) of point 

Pi , can also be calculated directly from the vector of the generalized velocities ( qi
ɺ ) and accelerations ( qi

ɺɺ ) of 

body i:  

 r C q
p ii P i=ɺ ɺ  (6) 

 r C q
p ii P i=ɺɺ ɺɺ  (7) 

2.1.2. Kinematic Constraints 

�e modelling of a multibody system requires the implicit or explicit definition of the elements that compose 

it. �eir description is performed through mathematical equations, commonly named kinematic constraints, which 

relate or state dependencies between different variables, such as generalized coordinates, reference points, angular 

drivers, among others. �is section presents the constraint equations (Φ ) for the most common elements applied 

during the modelling of mechanical systems, considering a Fully Cartesian Coordinates formulation. �eir 

equations, as well as the respective contributions to the Jacobian matrix (Φq ); and right-hand-side vector of the 

velocities ( υ ) and accelerations ( γ ) are compiled in Error! Reference source not found.. 

2.2. Equations of Motion and Dynamic Analysis 

�e equations of motion describe mathematically the dynamic behavior of a given physical system in time. 

In a framework of a constrained multibody system, these equations relate the kinematics, inertial forces and 

generalized accelerations of the system and the internal and external forces that act on it as expressed in [7]: 
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where M is the mass matrix of the system, �� , � and g are respectively the vector of the generalized accelerations, 

Lagrange multipliers and generalized forces. From a numerical point of view, the use of the kinematic acceleration 

equation in forward dynamics simulations can result in convergence problems [7]. Hence, it is advised to use a 

stabilization method to avoid constraint violations and lead to a more stable integration procedure. In this work, a 

Baumgarte stabilization methodology [8] was implemented, being analyzed the influence of different Baumgarte 

coefficients (� and 	) in the convergence of the method. 
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(1) 
u : generic vector belonging to body i 

uɺ : vector u angular velocity. 

(2) 

P i
C  - transformation matrix of point P with respect to body i 

i = index of th body 

*
r : prescribed  joint global coordinates / 

*
rɺ : prescribed joint global velocities /

*
rɺɺ : prescribed joint global accelerations  

(3) 
[ ]1 0b = if roller joint is aligned with horizontal direction (x axis) 

[ ]0 1b = if roller joint is aligned with vertical direction (y axis) 

(4) 

P i
C  - transformation matrix of point P with respect to body i. 

jPC - transformation matrix of point P with respect to body j. 

iq : vector of generalized coordinates of body i 

jq : vector of generalized coordinates of body j 



(5) 

uɶ : vector perpendicular to vector u  

,u x : generic vectors belonging to body j  

,v w : generic vectors belonging to body j  

,θ u v : angle between u and v  

u : 
i jA i B j−C q C q  

v :
j jC j B j−C q C q  

L u and L v  : vector u and v length 

, ,A B C :  three collinear points belonging to body i, body j and body j respectively 

iAC : transformation matrix of point A with respect to body i  

jBC  and 
jCC : transformation matrices of points B  and C with respect to body j  

,θ x w : constant angle between vectors x and w  

90i j

T T
A CB=E C R C  

90j j

T T
B CB=G C R C  

 

90
T

R - transpose of a 2x2 90 degrees rotation matrix 

j j jCB B C= −C C C
 

θɺ : angular velocity 

θɺɺ : angular acceleration 

vɺ : vector v  linear velocity 

 

(6) 
xɶ  : vector perpendicular to vector x  

wɶ : vector perpendicular to vector w  

(10) 
t
∗

r - prescribed linear trajectory / t
∗

rɺ - prescribed linear velocity / t
∗

rɺɺ - prescribed linear acceleration. 

Tab. 1: Most common elements constraint equations (Φ ) and their contributions to the Jacobian matrix (Φq ), right-hand-side vector of the velocity ( υ ) and acceleration ( γ )
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Fig. 2: Multibody System: most common joints  

2.3. Mechanisms modelling  

�e validation of the model was performed by analyzing its efficiency in the study of two mechanisms and 

their results compared with a collection of benchmark problems available on the Library of Computational 

Benchmark Problems [9]. �e formulation was implemented in an in-house software developed in Instituto 

Superior Técnico using Python language (v2.7.10). Both models followed the specifications presented in the 

benchmark database [9]: a) Simple Pendulum: mechanism composed by a point with mass (m = 1 kg) and a 

massless rod (L = 1 m). �e rod is connected to the ground via a revolute joint that constrains the system motion 

to the x-y plane (see Fig. 3).  �e system moves under gravity effects (-9.81 m.s-2 along the global y axis) from an 

initial position in which the coordinates of point P1 are x0 = -1 m, y0 = 0 m. �e initial velocity of the pendulum 

is zero and the total simulation time is 10 s; b) Slider-Crank:  mechanism composed by two rods with equal length 

(L = 1 m), a uniformly distributed mass (m = 1 kg), and a square cross section of width r = 0.1 m (see Fig. 3). �e 

slider is considered to be massless. �ere is no friction between the slider and the ground. Point P3 is constrained 

to move on the x axis. �e system is in a singular configuration, when the value of the angle of the first rod with 

respect to the x axis is / 2nθ π= , with n = 0, 1, 2… �e system moves under gravity effects (-9.81 m/s2 along the 



global y axis) from the initial position (presented in Fig 3), in which / 4θ π= . �e initial velocity of point P3 is 4 

m/s in the negative direction of the global x axis. �e total simulation time is 10 s. 

 

Fig. 3: Planar Pendulum (Left); Planar Slider-Crank (Right) (adapted from IFToMM benchmark library [9]) 

 

For both mechanisms a forward dynamics simulation was performed considering a computer with the 

following characteristics: a) CPU: Intel® Core ™ i5 CPU 750 @ 3.67Ghz b) RAM: 12 GB; c) GPU: NVidia 

Quadro FX 380; d) Operative System: Windows 10 Pro 64 bits. To solve the equations of motion (8) the 

scipy.integrate.odeint integrator was used with the default parameters (variable step integration). In order to 

understand the influence of the Baumgarte stabilization in the simulation convergence, different coefficients were 

tested. Following Nikravesh recommendations, equal values were considered for � and 	 [2], varying from 0 to 

100 with a step of 5. �e ‘x’ and ‘y’ coordinates of point P1 in pendulum and P3 in slider crank, the variation of 

the system mechanical energy, the constraints violations and other computational outcomes were compared with 

data available in the database of the Library of Computational Benchmark Problems, specifically the models 

implemented by Francisco González using Natural Coordinates formulation [9]. A statistical analysis was 

performed considering a Bland-Altman Limits of Agreement methodology [10] and Intraclass Correlation (ICC) 

[11] for assessment of the data consistency and agreement. 

3. Results 

�e validation of the formulation presented in this work was performed by applying it in the kinematic and 

dynamic analysis of simple mechanisms. In general, the kinematic formulation allowed to model in an intuitive 

way the mechanisms in study, resulting in constraint equations only dependent of linear and quadratic terms. No 

problems were found regarding the convergence of the methodology in the inverse kinematic and dynamic 

analysis of these mechanisms. In all cases, the outcomes presented an excellent agreement with the results obtained 

using the respective algebraic equations for both kinematic and dynamic patterns. �e formulation was also 

accessed by comparing its performance during forward dynamic simulation with benchmark data for two 

mechanisms available in IFToMM website. In the pendulum case, the methodology converged with success to a 

feasible solution for the tested Baumgarte coefficients, presenting a high correlation with the provided data. On 

other hand, the slider crank methodology converged for almost all the tested coefficients. However, for a set of 

parameters (0 � � � 	 
 45�), the solution presented an abnormal movement, behaving like a pendulum after a 

given time instant, i.e. point P3 stops in the same position as point P1 and the two rods start to swing together. For 

the purpose of presenting the data, sections 3.1 and 3.2 will present respectively the results obtained considering 

the Baumgarte coefficients equal to 0 and 50. 

3.1. Simple Pendulum 

Fig. 4 presents the x and y coordinates of point P1 during the simulation. As expected, the coordinates 

followed a pattern typical of a pendulum. �e comparison with the benchmark data does not allow to observe 

significant differences in the pattern and magnitude of point P1 for the entire simulation time. �is fact is supported 



by the analysis of the Bland-Altman plot (see Fig. 5) and Intraclass Correlation Coefficients (ICC) between the 

two cases, which present an excellent score both for consistency and absolute agreement (see Tab. 2). 

 

Fig. 4:  Time-history of the x and y coordinates of point P1 for the pendulum simulation 

 
Fig. 5: Bland-Altman plot for x and y coordinates of point P1 for the pendulum simulation 

 

 Intraclass Correlation 

 Consistency Absolute Agreement 

‘x’ coordinate 1.0 1.0 

‘y’ coordinate 1.0 1.0 

Tab. 2: Intraclass Correlation Coefficients for the pendulum simulation 

Fig. 6 and Fig. 7 show the variation of the mechanical energy of the system and the violations of the 

constraints during the simulation. �e mechanical energy is obtained as the sum of the kinetic and potential energy 

of the mechanism and the constraints violations are calculated as the norm of the kinematic constraints vector. In 

the first case is possible to observe variations in the system mechanical energy in the order of 10-6, lower than the 

value presented in the benchmark data. However, the obtained results show an increase of the variation of 

mechanical energy along the simulation time, a pattern not observed in the benchmark data (see Fig. 6). A similar 



behavior is observed for the constraints violations, increasing its value with the evolution of the simulation time. 

Despite presenting lower values in both cases, it is important to note the differences observed in the order of 

magnitude of the constraints violation, probably related with differences in the error tolerance of the integrator 

(Benchmark: 10-9; RFFC: 10-8). Other computational parameters related with the formulation implementation can 

be consulted in Tab. 3  

 

Fig. 6: Variation of the mechanical energy for the pendulum simulation  

  

Fig. 7: Constraints violations for the pendulum simulation 

 Benchmark Simulation 

Programming Language  C++ Python 

Computer Intel Core i5-4250U @ 1.30  

GHz 1.90 GHz - 8 GB RAM 

Intel® Core  i5 CPU 750 @ 3.67 Ghz - 

12 GB 

Number of simulations NA 1.0E3 

Average CPU Time (s) 0.53 0.36 

Integrator trapezoidal rule Adams / BDF 

Maximum admissible error:  1.0E-9 1.5E-8 

Time step duration (s)  1.0E-3 Variable 

Number of time steps - 1416 

Maximum number of iterations per time  12 27 

Tab. 3: Computer specifications, integrator parameters and simulation time for the pendulum simulation  

 

 



3.2. Slider Crank 

As in the pendulum case, the results obtained for the simulation of the slider crank mechanism followed the 

patterns presented in the benchmark data. �e ICC analysis of point P2 shows a high correlation between 

simulation and benchmark data both for consistency and absolute agreement (see Tab. 4). Despite the high 

correlation values, a detailed analysis of the differences indicates an increase of this value along the simulation 

time, presenting a maximum value of 0.03m for ‘x’ coordinate and 0.05m for ‘y’ coordinate at t=10s (see Fig. 9).  

 

Fig 8: Time-history of the x and y coordinates of point P2 for the slider crank simulation 

Although the simulation results for the mechanical energy variation indicates an increase of one order of 

magnitude when compared with the benchmark data, the variations oscillated around 10-3 J. Low values were also 

observed in the constraints violation (FCCF: 10-8; Benchmark: 10-11), indicating the convergence of the 

methodology along the simulation time. When compared with the pendulum case, an increase of approximately 

1.8s was observed in the simulation time, as well as an increase in the number of time steps and maximum number 

of iterations (see Tab. 5). 

 

Fig. 9: Bland-Altman plot for x and y coordinates of point P2 for the slider crank simulation 



 Intraclass Correlation 

 Consistency Absolute Agreement 

‘x’ coordinate 0.998 0.998 

‘y’ coordinate 0.998 0.998 

Tab. 4: Intraclass Correlation Coefficients for slider crank simulation 

 

Fig. 10: Variation of the system mechanical energy for slider crank simulation 

 

Fig. 11: Constraints violations for slider crank simulation 

 
 Benchmark Simulation 

Programming Language  C++ Python 

Computer Intel Core2Duo @ 3.16GHz Intel® Core  i5 CPU 750 @ 3.67 Ghz - 12 GB 

Number of simulations NA 1.0E3 

Average CPU Time (s) 0.328 2.21 

Integrator trapezoidal rule Adams / BDF 

Maximum admissible error:  1.0E-9 1.5E-8 

Time step duration (s) 1.0E-3 Variable 

Number of time steps - 2430 

Maximum number of iterations 1.2E1 4.5E1 

Tab. 5: Computer specifications, integrator parameters and simulation time for the slider crank simulation  

 



4. Discussion  

Fully Cartesian Coordinates Formulation introduces a novel concept of a generic rigid body, which considers a 

predetermined kinematic structure composed by one point and unit vectors. Despite using the same kinematic 

elements as the Natural Coordinates Formulation, the body structure in FCCF considers only one point located on 

its center of mass instead of different relevant points. �is approach avoids the need of body-specific constraint 

equations, approximating it from the RPCF. However, when compared with the Cartesian Coordinates, FCCF 

presents the advantage of using only Cartesian coordinates, eliminating terms dependent of angular variables that 

are in general more computational expensive.  

In planar models, the rigid body in FCCF can be represented by one point and one vector to describe 

respectively the body translation and orientation. As this new structure implies that the body coordinates are 

independent from the adjacent ones, no points are shared. �erefore, when compared to the NCF, FCCF requires 

an explicit definition of joints, resulting in a larger number of generalized coordinates. Nevertheless, the problems 

related with the use of implicit joints in NCF are avoided, namely the appearance of coupled matrices and the 

impossibility of computing directly the reaction forces from the equations of motion. Moreover, since the 

coordinates of a given point can be described using the generalized coordinates and a constant transformation 

matrix (C), the calculation of the system relevant points is more computational efficient (e.g. joints, points of 

application of force, etc.), not requiring an update of the rotation matrix for each time frame as in RPCF. �is 

simplicity in points calculation also reflects in the kinematic modelling of the system, since FCCF generates linear 

or quadratic constraint equations and their contributions to the Jacobian matrix (��) and right-hand side vectors 

(� and �) are also constant, linear or quadratic.  

Another important aspect of this formulation is the definition of the system mass matrix. If the origin of each 

local reference frame is set at the body center of mass and its vectors are orientated with body principal axis of 

inertia, then the mass and principal moments of inertia are directly the entries of the mass matrix. Moreover, the 

mass matrix is constant, diagonal and easy to define, in opposition to NCF, in which the contribution of each 

matrix entry need to be calculated considering the body inertial parameters and the location of the generalized 

coordinates in relation to its CoM. 

In order to validate the FCCF, this formulation was implemented in an in-house software developed in Python 

and tested through the analysis of different mechanisms. No problems were found regarding the system modelling, 

as well as the inverse kinematic and dynamic analyses did not presented problems related with the convergence 

of the method. Its performance was also analyzed by applying it in a forward dynamic simulation of two simple 

mechanisms, a simple planar pendulum and a planar slider crank, and its results compared with benchmark data.  

In the pendulum example, the simulation did not present convergence-related issues for the range of 

Baumgarte coefficients tested (0 � � � 	 � 100�). An analysis of the coordinates correlation between the 

simulation and benchmark outputs indicates an excellent score both for consistency and absolute agreement. �is 

agreement is contradicted by the Bland-Altman plot, which shows that some values exceed the limits of agreement. 

However, this limit, which is dependent of the standard deviation of the differences, presents a very low value 

(1.5E-4 m) not having a physical meaning. Regarding mechanical energy variation, benchmark data shows a 

periodic behavior while simulation data increases over time. However, the magnitude of the variation in both cases 

is smaller than 5E-5 and therefore negligible, as expected since no dissipative terms were included in the 

simulation. �e analysis of the evolution of the constraints violations during the simulation time also shows a 

different pattern. �e constraints violation for the FCCF increased along the time with a maximum value of 4E-6 

while benchmark data shows a very regular pattern with a maximum value of 4E-10. �ese variations can result 

from the differences on the integrator parameters, namely the tolerance errors, integration algorithm, time step, 

among others. For the methodology implemented in this work the default values from the scipy.integrate.odeint 

were used.  

Contrarily to the pendulum example, the slider crank presented some convergence issues in the forward 

dynamic simulations. For a set of Baumgarte coefficients, the system after running some time started to behave 

like an erratic pendulum, with the point P3 fixed in the same position as the point P1. Results showed that values 

of � and 	 between 0 and 40 enable the convergence of the method, presenting, however, the behavior above 

described. For an � and 	 equal to 45, no convergence was achieved. Finally, for values of � and 	 higher than 

50, no problems were found in the convergence of the simulation, resulting in the expected outcome. For this 

range of coefficients, the simulation results achieved an excellent agreement with the benchmark data. As in the 

pendulum case, the Bland-Altman plot also indicate the existence of differences higher than the limits of 

agreement in some points. An analysis of these variations allows to observe an increase of the differences with the 



simulation time, achieving values on the order of 0.03m to x and 0.05m to y in the end of the simulation. As 

expected, the variation of the mechanical energy for the slider crank presents also small values (6E-3 J), since no 

dissipative terms were considered. �e constraints violations for the RCCF does not show an increase with the 

simulation time, as in the pendulum example, reaching a maximum value of approximately 5E-8, inferior the 

tolerance error. 

�e computational times in the present work were calculated based on 1000 simulations. �e increase in the 

complexity in the second example resulted in a significant increase in the computational time of approximately 

514%. When compared with the benchmark data, the results show a decrease in the computational time for the 

pendulum (FCCF: 0.36 s; Benchmark: 0.53 s) and an increase for the slider crank (FCCF: 2.21s; Benchmark: 

0.328 s). However, no conclusions can be taken between the two formulations, since the programming languages 

are substantially different and the computer used in the simulations do not present similar specifications to the 

ones used in the benchmark problem. �e computational outcomes for the two examples shows also an increase 

in the number of iteration per time step when compared with the benchmark. �ese differences are not directly 

comparable, since the integrator is not the same and the benchmark considered a fixed time step. It is important to 

mention also that no speed optimization packages like Numba or Cython were used in this work.  

5. Conclusions  

This work aimed the development of an alternative multibody formulation, which would avoid the disadvantages 

of the common methodologies. The proposed formulation, Fully Cartesian Coordinates, presents a new concept 

of rigid body that is not body-specific dependent as in the Natural Coordinates, but it is defined recurring 

exclusively to cartesian coordinates, through the use of points and vectors. This fact eliminates the use of angular 

variables, such as in the Cartesian Coordinates, reducing the computational complexity of the problem to solve, 

since the constraint equations and their contributions to the Jacobian matrix and right-hand side vectors of 

velocities and accelerations are constant, linear or quadratic. 

The proposed formulation allowed an effective modelling and analysis of different mechanical systems. No 

convergence-related issues were found in the inverse dynamic analyses. The formulation performance was also 

evaluated by applying it in the forward dynamics simulation of two benchmark problems. The results showed an 

excellent agreement with the provided data allowing to conclude that the presented formulation is an effective and 

efficient option to model and perform dynamic analysis of rigid multibody systems with different topologies.  
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