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ABSTRACT — Over the past decades topology optimization has gained large interest in structural
design since it allows fast development of optimized complex geometries. These conceptual designs
will often lead to superior properties compared to designs developed using classical human design
techniques. However, when this optimization is performed for components which are part of a multibody
system (MBS), design changes on the body can have a significant impact on dynamic behavior of the
system and its loading conditions. This interaction therefor needs to be taken into account in the
optimization.

In this work we propose a fully coupled flexible multibody component structural topology optimization
approach, where the design objective is directly evaluated and improved from the flexible multibody
response. This is in contrast to classical methods where the MBS model only serves to generate loads
which are applied to a separate finite element model.

By applying a novel efficient flexible multibody formulation, based on the reduced small deformation
component response, the entire optimization workflow can be made sufficiently efficient for practical
application on large meshes. Moreover an extrusion constraint is added to the optimal design problem
in order to further limit the computational load by limiting the design space, and to obtain practically
cheap-to-manufacture designs.

The proposed methodology is demonstrated on the structural topology optimization of the connecting
rod in a slider crank. The proposed approach enables fast convergence to a practically manufacturable
design.

1 Introduction

Over the past decades structural topology optimization has gained large interest in structural design as it enables
fast development of optimized complex geometries. These designs will often lead to superior properties compared
to classical human designs [1} 2} 3]].

Although topology optimization was originally developed for optimizing single components rather than full
mechanical system assemblies, several methods have been proposed in literature to account for the dynamic be-
havior of multibody systems. Most notably Kang proposed the method of Equivalent Static Loads (ESL)[4], which
remains the basis method for these applications.

The ESL approach transforms the dynamic loads obtained from a multibody simulation into a static optimiza-
tion problem consisting of multiple critical load cases for a single body. In this weakly coupled approach the
optimizer does not explicitly take the multibody interaction into account, but only re-evaluates the component
loads from the multibody model after a full topology optimization run on the statically loaded component.

This decoupling is convenient as it enables the exploitation of of-the-shelf multibody software and structural
topology optimizers, but also has several drawbacks: the ESL aproachs for example makes it particularly challeng-
ing to introduce constraints directly based on the dynamic response of the component.

In this work we therefore propose a fully-coupled approach for component topology optimization in a (flexible)
multibody system (MBS). In this approach, a full flexible multibody simulation is performed for each topology



iteration. The design goal and constraints are then evaluated on the body response from this MBS simulation. This
resolves the issue of imposing artificial constraints to the body to eliminate the rigid body motion as required for
ESL based approaches [3].

The computation of the response derivatives with respect to the topology parameters, as required for the opti-
mization iterations, is enabled through the use of a recently proposed flexible multibody formulation, namely the
flexible natural coordinate formulation (FNCF) [6].

Moreover, in order to ensure feasible designs from a manufacturing perspective, we include a manufacturing
constraint in the optimization process. Specifically we optimize components with the addition of an extrusion
constraint, as extrusion offers a particularly cost-effective production scheme.

The overall topology optimization scheme is discussed in Sec. [2|and a numerical example is provided in Sec.

Bl

2 Optimization Framework

This work focuses on the design of mechanisms for industrial mechatronic applications. Often these applications
require lightweight components in order to achieve the higher operational speeds without compromising the nor-
mal operation. Typically the flexible deformation is assumed to be small in comparison to rigid motion of the
components. However it can have an important impact on the functional behavior of the machine.

Fortunately these deformations are sufficiently small in practice such that a small-deformation flexible multi-
body model can be used, rather than a fully geometrically nonlinear finite element model. The latter would lead to
unacceptable computational loads on a full system level optimization for most practical applications.

This section presents an approach for component structural topology optimization based on flexible multibody
responses. First the overall scheme is discussed in Sec. the specific FMBS approach used is briefly summarized
in Sec. [2.3] the optimizer is discussed in Sec.[2.4] and a specific approach to obtain extrusion profiles is discussed
in Sec.

2.1 Fully-coupled topology optimization

The overall scheme for the structural topology of a component in a flexible multibody system proposed in this
work, is summarized in Fig.

The initial topology parameters x represent the available design space for the novel component, bounded by the
physical space available in the machine. These parameters are connected to the density of the elements in a Finite
Element (FE) discretization of the design space [1]]. With these parameters and component FE model, there is an
associated multibody model . (x) which is simulated to evaluate the system and body response q. The topology
parameterized body description and associated FMBS model are discussed in Sec.

The corresponding flexible response qr is then used for evaluating the design objective ¢(qr,x) and design
constraints ¥(qr,x). Next the topology design update Ax is computed and the convergence is evaluated on the mag-
nitude of this update (the optimizer stops if this update is smaller than a prescribed tolerance tol). The optimizer
and constraints are discussed in Sec.

2.2 Topology parameterized flexible body description

For small deformation problems, as discussed here, the global finite element (lumped) mass Myg, and stiffness Krg
matrices can be described as a function of the density parameter x; for element i:

Ne
Mre = Y Mpg;g(xi), (1)
i=1

e
Kre = KOFE,ig (xi)- (2)
=1
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Fig. 1: Schematic of the steps for multibody based component structural topology optimization

Here M%E,i and K%Ei represent the contribution to the full body mass and stiffness matrix from element i for the
full design domain finite element discretization and g(x) is a scalar function to describe the dependency on the
density parameter. The parameter x; then indicates how much each element contributes to the optimized model and
this parameter should be as close as possible to either 1 or 0.

A fundamental issue when including a finite element model in a multibody model is the large model size. The
small deformation assumption partially eliminates this issue as it allows the use of linear model order reduction
(MOR) techniques. In this work, we exploit the well-known Component Mode Synthesis technique to approximate
the local displacement field of the FE model u € R"?0F by projecting an appropriate set of n,, assumed modes
gathered in ¥ € R"Por *"n guch that

u=uy+¥qr 3)

where n,, < npor. Due to the MOR-approach the computational cost of the MBS simulation is not affected by
the number of elements but rather by the amount of assumed modes. This reduction basis ¥ is computed from the
body mass and stiffness matrices and is therefore also a function of the topology parameters x. It is important to
highlight that this implies that the reduction basis needs to be recomputed for every topology parameter update,
which can also lead to considerable computational loads for large scale problems.

The original nodal mesh positions ug, reduction basis ¥ and mass and stiffness matrices are the body informa-
tion which is passed to set up the multibody model, as discussed in the next section.

2.3 Flexible Natural Coordinate formulation for system and body dynamics

To model the flexible multibody dynamics, we exploit the Flexible Natural Coordinate Formulation (FNCF) as
originally suggested by Vermaut [6]. This FNCF approach allows a fast and easy evaluation of the dynamic
multibody simulation which is important due to the iterative nature of optimization routines. The formulation is
based on a small deformation assumption. A particularly desireable property of this approach is the simple structure
of the resulting equations of motion: the dynamic balance equations reduce to a set of (bi)linear equations and the
constraint equations are a set of quadratic equations. Here, we briefly summarize the linear structure of the dynamic



balance in the equations of motion. For the full derivation of the formulation we refer the reader to Vermaut et
al. [6]].
The generalized multibody coordinates q are

q=|I®], )

which holds a set of displacement qp and redundant orientation qr coordinates for each body followed by a set
of redundant modal participation factors expressed in the inertial qg and body attached qr reference frame. It is
important to note that a set of intra-body constraints are necessary due to the redundant flexible description:

qc = qr ® qr (&)

where @ represented the Kronecker product.
The equations of motion are derived from the Lagrangian which yields

Z(q,4,A) = Exin(4,4) — Ecia(q) — A7 ¢(q) (©6)

where @ holds a set of intra- and inter-body constraint equations accompanied by their Lagrangian multipliers A.
The equation of motion are then obtained by applying Hamilton’s principle to the Lagrangian:

dr aq aq (7
dA -
This leads to the following set of equations of motion in the generalized coordinates (:
.. 29T .
My, (4) +Kgeq) + %l =fou(q,q,1) ®)
¢(q) =0

where an optional external force term (f,,;) has been included.

For the FNCF description, in contrast to the classical floating-frame-of-reference (FFR) approach, the gener-
alized mass matrix is configuration independent and has the following structure for a given body with nodal mesh
coordinates ug and reduction basis W:

YN m; g Yin
- ioMil, WMl | @B 0(12-0n,)xn,,
My, = symm T ©
Onmx(12+9nm) O”mxnm

where M is the lumped diagonal mass matrix for the FE body, 77 is a vector containing all the lumped mass values
of the finite element model, m; is the i-th lumped mass contribution. The operator = represent the split of a vector
along the nine components of a rotation matrix for obtaining the global contribution of local components under any
rotation [7} |6]]. It is important to note that a mass matrix consisting of only uncoupled translational components
is invariant for rotation, as has been discussed by Gerstmayr & Ambrosio [7]. The resulting mass matrix for the
FNCEF approach is therefore also constant.

Under the proposed FNCF approach, the generalized body stiffness matrix becomes:

0
K‘]q - |: (12+l;n]’1’)><nm:| KFE [OnmX(IZJFg”M) ‘P] (10)

Note from the brief discussion of FNCF that the method has both a constant mass and stiffness matrix at the cost
of a larger set of generalized coordinates in comparison to the FFR approach. Furthermore if viscous damping,
such as Rayleigh or modal damping, is assumed the resulting damping matrix will also be constant. This structure
contributes to the computational efficiency of the FNCF methodology and makes it particularly easy to obtain
derivatives with respect to the topology design parameters.
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2.4 Optimization scheme

Starting from the FNCF multibody formulation presented above, the general topology optimization problem for
the density parameters x of a body can be summarized as:

min  @(x)
X
T
MQQQ+quq+ %Lq)v - fext =0 (11)
Xmin L Xi < Xpax, i =1,...,1,

')/j(x)g'yjmaxa J=1,.. ncon

where 7, is the number of design variables and n.,, is the number of optimization constraints. The first two
constraint equations account for the dynamic behavior of the multibody system. The third constraint equatation
represents the bounds for the i-th density variable x; and the last set of constraint equations can include general
design constraints like the maximum deviation of a prescribed trajectory, a maximum value for Von-Misses stresses
or many other limitations.

For this topology optimization approach with density parameters, the problem is essentially a binary program-
ming problem: the design variables should either be O or 1 indicating that the domain represented by the element
is a void or solid material. In order to avoid expensive combinatorial searches, the binary problem is relaxed in the
sense that intermediate values are allowed during optimization. However, in order to prevent physically unsensible
designs, the parameters are penalized such that when convergence is reached a close to black-and-white design is
obtained.

To asses the convergence of the proposed design we use the so called grayness value G [8}9]. This is a scalar
value indicating the discreteness of the design. If G equals 1 this indicates a fully gray design meaning that all
elements i have x; = 0.5. On the other hand if G = 0, it indicates a fully black-and-white design, meaning that all
elements have either x = 0 or x = 1. Hence near-zero values of G are an indication of a converged design:

G(x) = if"xi(lfx,-) (12)

Ne ;21

In this work, we utilize the solid isotropic material with penalization method (SIMP) as suggested by Sigmund to
penalize the intermediate density values in order to obtain a near black-and-white solution [1]. With this SIMP
approach the material properties are expressed as:

Ei(x) = x’Ey (13)

where Ey is the Young’s Modulus of the isotropic material and p < 1 is the penalization power. If the penalization
factor is larger then 1, the intermediate design variables are penalized. The full body stiffness matrix can then be

found from: .

Kre(x) = Y XKpp (14)
=1

where K% £ 18 the initial element stiffness matrix assembled with Eo, and which fits the framework presented in
Sec.22

Several optimization routines can be used to solve equation (I1)). Both heuristic schemes and numerical pro-
gramming methods are readily available from literature. Exampes are found in: ConLin [10], GCM [11], Se-
quential Quadratic Programming (SQP) [12]], Surrogate Based Optimization (SBO) [13]] and Method of Moving
Asymptotes (MMA) [[14]. The selection of a suitable optimizer depends on the characteristics of the problem and
the available information e.g. existence of gradient.



2.5 Manufacturing constraints: Extrusion constraints

Inherent to topology based optimization is the freedom of the optimizer to propose structures which are ideal
for conceptual design but can be difficult to produce using classical low-cost fabrication processes. This can be
circumvented by introducing manufacturing constraints. Among the many fabrication processes extrusion is a low
cost production process which is used whenever components of constant cross section can be applied. In this work
we include an extrusion constraint.

Since extrusion assumes a constant cross-section for the entire component the original 3D problem can be
simplified to finding the optimal material distribution in a 2D space. This is done by mapping the design variables
of the individual 3D elements onto a corresponding projected plane. The resulting problem has much less variables.

The proposed cross-sectional projection is a heuristic scheme which consists of the following steps:

1. determining the centroid of each element of the reference 3D mesh
2. projecting the centroids on the 2D space
3. clustering the projected centroids and construct an appropriate mapping

Several methodologies can be used to determine the centroid of the element, we utilize the shape functions of
the element such that the centroid is trivially found via

Ni(0,0,0)IZi (15)

3
Ue =

i=1
where V; is the shape function for the i-th node of the current element and i; are the global coordinates of that
node.
For each centroid we perform a projection to determine it’s local £ and 7 coordinates of the 2D space. The

projection plane is assumed to be orthogonal to the extrusion curve which is taken at the neutral axis of the design
space. The concept of the clustering is depicted in Fig.[2]

Fig. 2: Clustering of the design variables

3 Numerical example

3.1 Problem description

The considered model is a slider crank mechanism based on the example presented in Moghadasi et al. [9]. The
example considers the topology optimization of the connecting rod which is discretized in a rectangular domain
with 120000 hexahedral elements. The input crank angle is a smooth linear function starting at 6(0) = Orad and
increasing to 4xwrad at t = 2s.



The design problem is formulated as a minimization of compliance, this is a typical objective function for
structural topology optimization [} (15 9]. The objective function for a body with parameterized stiffness matrix
Kprg (x) takes the form:

0(x) = ¥ Kre(x)¥qr (16)

where qr are the local flexible participation factors obtained from the FNCF model. For this case the con-
necting rod flexible deformation in the multibody model is described using 16 CMS modes. The design space is
limited by a constraint on the allowable amount of volume, in this example we used a volume fraction of 50%. The
topology optimization is performed both with and without the extrusion constraint.

3.2 Results

This section describes the results obtained for the structural topology optimization of the connecting rod in the
above described slider-crank system.

Fig. 3] shows the optimization domain and optimized geometry of the connecting rod with and without the
extrusion constraint. Without the extrusion constraint, although it is not easily visible on a 2D picture, we obtain a

Fig. 3: Top figures show optimized topology with extrusion constraint, the bottom figures depict the optimized topology without extrusion constraint.

typical type of geometry which is expected from these types of topology optimization. Obviously this would be a
rather expensive geometry to manufacture and even though it might have highly desirable properties, this type of
geometries will see little practical application. In practice this type of design will require post-processing to ensure
manufacturability at a reasonable price. The result obtained with the extrusion constraint on the other hand would
be low cost to manufacture, but still show a sufficiently interesting geometry to warrant the use of an automatic
optimization tool.

The application of the extrusion constraint has only a minor impact on the final performance of the proposed
design in this example. Fig. [] shows the deviation of the motion of the piston mass compared to a perfectly
rigid system for both geometries. By applying the proposed multibody topology optimization scheme, the effect
of different design constraints on the resulting optimal geometry can be easily evaluated. If for example motion
accuracy is more important, the volume fraction constraint could be relaxed and augmented, or replaced, by a
tracking accuracy constraint.

Finally Fig.[5|shows the fully coupled topology optimization convergence behavior over the different optimizer
iterations for the connecting rod with the extrusion constraint. This figure shows the rapid convergence to a final
design. As the applied extrusion constraints strongly limit the search space for the optimizer, only a very limited
number of iterations is required for the proposed approach. This low number of iterations coupled with an efficient
flexible multibody simulator leads to low overall optimization costs for the proposed framework. The grayness
evaluation indicates that a practical design is obtained, whereas the compliance clearly demonstrate how the design
stiffens over the different iterations. The norm of the parameter change varies closely with these two other measures
and is used in practice to terminate the topology optimizer.
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Fig. 4: Piston mass trajectory and trajectory deviation with respect to rigid reference.
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Fig. 5: Convergence over iterations for extrusion constrained coupled multibody topology optimization of slider-crank

4 Conclusions

This work has shown a fully coupled multibody based component structural topology optimization approach. This
is in contrast to previous work in literature where a multibody simulation was run to extract representative loads for
a separate body topology optimization based on a linear finite element model. In the proposed approach the flexi-
ble participation factors obtained from the flexible multibody simulation (FMBS) are directly exploited to evaluate
typical topology optimization goal functions, like elastic potential energy over time. In order to enable an over-
all sufficiently efficient framework, this work uses the recently proposed flexible natural coordinate formulation
(FNCEF). To further speed up the optimization and obtain more feasible design for manufacturing, the authors also
exploited an extrusion constraint. The proposed approach is demonstrated on an optimal design for a connecting
rod in a slider-crank mechanism. This example shows rapid convergence for a practically applicable design. In the
current framework, one of the main bottlenecks is the recomputation of the reduction basis for the flexible motion
for each parameter iteration. Future work will focus on lowering the computational load of this stage through
parametric model order reduction methods. Also the computation of full response derivatives through an adjoint
approach are currently being developed.
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