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ABSTRACT — How the separated bodies behave when they come into a contact? We decide to focus 

this paper on the behaviour of a “rigid” body biting into another “rigid” body, with some nonzero 

relative velocity. What are the phenomena appearing during the impact (i.e., collision)? How are 

we able to model it? In the presently considered case, the introduced collision appears between a 

selected element of a multibody structure and its reference body being interpreted as the motionless 

ground. Instead of the classic case, described in a number of dissertations, where a single 

impacting contact is considered, three unilateral contacts are considered simultaneously. 

Impacting bodies are considered as rigid (non-deformable). According to it, all impact periods are 

considered as infinitesimally short, (i.e., their durations as negligible in compare to the other 

integrated periods). As a consequence, some simplifications are possible in integrations performed 

during the impact period. Position can be considered as constant. Non-impact forces (gravity, joint 

actuation forces) can be neglected. Velocity quadratic inertia terms can be neglected, too. Only the 

velocity changes have to be evaluated. It can be done with use of the mass matrix and the contact 

forces, only. As it is detailed in the paper, in some of the considered cases, solution of a linear 

system of equations can be used instead of the integration. It is not a novel approach. It can be 

found in a number of previously presented publications. However, it was a single unilateral contact 

that was considered mostly, i.e., there was a single body of the system that was impacted with the 

other. When other constraints were present in the system, they were considered as bilateral 

constraints. In the present test, a three unilateral contact points are considered, simultaneously. 

The main body of the system is at rest and it is supported at two unilateral contact points. As the 

mass of the main body is relatively high, these two contacts are preserved during all the pre-impact 

period of calculation. An additional arm is attached to the main body and it rotates at a high speed. 

It impacts the ground. It effects in a third contact point that appears simultaneously with the two 

previous contacts. Extending the classic conclusion formulated for the single impact cases, post 

impact velocities can be calculated with use of the linear system of equations, i.e., they should 

depend on the mass matrix and the initial velocities, only. Such hypothesis is taken under 

verification in the paper. The numerical tests have disproved this hypothesis. Performed 

calculations have verified that classic method formulated for a single impact does not give the 

correct results, now. Post impact velocities of the system elements depend not only on the initial 

velocities of the impacting elements, but on the characteristics of the elastic and the damping 

properties of the contacting regions, too. 

1 Introduction 

When speaking about impacts in multibody systems, our first impression identifies it with some negative events 

that have to be avoided. We can unite them with some unrequited effects, i.e., with some constructional 

mistakes, or the control mistakes, too. In this first opinion, the eventual models of these events may to be 

prepared, and they have to minimize the negative outcomes, mainly. There is a bit of true in this impression, but 
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there are some intentionally impacts in multibody structures, too. As their examples: the grip of a manipulation 

object; the waking robot contact with the ground, or placement of the manipulation object in its final position, 

can be recalled easily as the examples of the intentionally required impacts.  

Impacts are not easy to be model in multibody programs. They do not fit well to the main assumptions of the 

multibody domain. In most of the cases, modeled elements (i.e., bodies) are considered as rigid. Such 

presumption is difficult to preserve in case of the impacts. It causes difficulties in the contact force estimation, 

too. When focusing on constraints description, it has to express the natural discontinuity in the description of the 

contact. There is no contact before the impact (and often there is no contact after the collision, too) but during 

the impact, the constraint is valid. Idea of the bilateral constraints becomes useless to describe such 

discontinuity. We are obligated to operate with the less conventional unilateral constraints, in such case. Inter-

penetration of bodies becomes forbidden, but free distant motion is accepted for them.  

When discussing the problem more generally, the unilateral constraints with impacts can be considered as a 

branch of one of the wider fields of mechanical researches, i.e., of the non-smooth dynamics problems [1, 2, 3, 

4] and/or of the dynamics with discontinuous events [5]. Unilateral, scleronomous constraints are considered in 

the most of the cases. Unilateral, rheonomous constraints are seldom [6, 7, 8]. As it was pointed in [5], two 

principal modeling methods are popular. With the first one, called the soft contact [9], details of the local 

deformations are considered in the contact region. Obtained results are near to the real ones, as far as a good 

model of the local deformation is accessible. However, the last problem is difficult. According to the specimen 

limited sizes, and rapidity of the processes, experimental measurements are practically impossible and have to 

be replaced by theoretical investigations, mainly. Obtained models can be detailed, but their verifications have to 

be limited to some global behaviors, only. With the second method, called the rigid body approach [5], 

impulsive constraints [10] or rigid contact [9], details of the contact are omitted. Instead of forces and 

accelerations, velocity changes are compared with the impulses of the forces. There are some ideas of the mixed 

method that combine elements applied from both of the introduced method, but they will not be the point of 

investigation of the present paper. 

Investigation of impacts is not the leading branch of multibody dynamics, but it is present in its 

investigations from the beginning. In 70’s of previous century, Wittenburg [11] used the Newton-Euler dynamics 

equations together with elements of the graph theory to investigate dynamics of impacting bodies. He operated 

with a rigid contact model, restricted to normal forces only. The expansion period was considered and its 

impulses were modeled with use of the restitution coefficient. Moreau [12, 13] and Panagiotopoulos [14, 15] are 

considered as the precursors, too. Haug et al. [16] applied virtual works in their investigations of impacts in 

multibody systems. Khulief and Shabana [17], as well as Rismantab-Sany and Shabana [18] operated with the 

generalized momentum balance method. They have investigated differences between lumped and regular mass 

formulations in flexible multibody system, as well as they looked for adequate generalized coordinates 

employed in investigations of impacts in the flexible multibody systems. Lankarani and Nikravesh [19, 20] 

applied continuous model of force and the Hertz’s contact law, as well as canonical impulse-momentum 

equations for impact analysis of multibody systems. To model unilateral contacts in multibody systems, Glocker 

and Pfeiffer [21, 22] operated with the principle of the linear complementarity problem. They announced some 

differences between results and operations when dealing with Newton’s and Poisson’s impact laws. Chang and 

Huston [23] applied Kane’s method to model impacts in unconstrained multibody systems. Zakhariev [24, 25] 

considered impacts with Coulomb friction in multibody systems. Ebrahimi and Eberhard [26, 27] focused on 

frictionless and frictional impact analysisi of planar deformable bodies. They centred their investigations on the 

linear complementarity problem, based on the Signorini conditions from impact problem of continua. Stronge 

[28] employed energetic coefficient of restitution to deal with frictional impact. Ambrosio [29] applied finite 

element, continuous force model, and proper contact models to investigate collisions. Müller [4] investigated 

time integration of dynamics of variable topology mechanisms. He had to ensure the compatibility of the 

generalized momentum and velocity at the switching events. Thus, he formulated a compatibility condition for 

the general case of successive activation of multiple constraints. Chadaj et al. [30] presented formulation based 
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on the Hamilton’s canonical equations. With this formulation, generalized momentum and force impulses were 

analyzed, instead of body accelerations and forces, at all stages of the performed calculations. Schreyer and 

Leine [31] proposed a mixed shooting–harmonic balance method for large linear mechanical systems with local 

nonlinearities. The unilateral constraint was modeled with the concept of the hard contact law and the Newton’s 

impact law. Dupac [32] investigated dynamics of a spatial impact between an external surface and a rigid beam 

attached to a sliding structure. The normal impulsive forces were determined by combining the elastic-plastic 

indentation theory with the classical Hertzian contact theory. Jankowski et al. [33] applied an alternative contact 

force model for selected materials and body shapes, and established a strategy to identify parameters appearing 

in the contact force expression. Tschigg and Seifried [34] used the surface elements from the finite elements 

model to model the contact. To reduce complexity of the employed model, and for capturing the low frequency 

phenomena in terms of wave propagation, they used damping only on the high frequency parts and the low 

frequency parts were remained not damped.  

Concerning to the Author’s bibliography, results of his first impact related investigations were presented in 

[35, 40]. A wheel/ground contact was considered. Two wheels were introduced in the model. Investigated 

wheels were rigid, infinitely thin (their thickness was considered as zero), and they were supposed as a part of a 

multibody system. At the initial period, one of the wheels was above of the ground and it beat it, after. Dynamics 

of the system was considered at level of velocities and impulses of the contact forces, only. Compression and 

extension phases of the contact were considered. In the compression phase, impulses were evaluated form the 

stop of the relative velocity between the wheel and the ground. Impulses were calculated in the three principal 

directions of the contact, i.e. in its normal, lateral and longitudinal directions. The extension phase was 

considered for the impulse of the normal force, only. Its impulse was evaluated as a fraction of the normal 

impulse of the compression phase (the Poisson’s law of impact and the impulse restitution coefficient). Impulses 

at the tangent directions were evaluated from the stop of the slip velocity, only. A sequence of consecutive 

changes of the rolling wheel was observed during the integration. In [36, 40], a planar kinematical over-actuated 

manipulator (10 joints) was considered. The shape of the system was a single kinematical chain of bodies 

interconnected by revolute joints, only. The terminal point of the manipulator beat a wall with friction. Again, 

dynamics of the system was considered at level of velocities and force impulses. Compression and extension 

phases were considered. Normal impulse of expansion was evaluated with the Poisson’s law of impact. With the 

normal and the tangent (friction based) impulses, different critical points (instants) were observed during the 

performed calculations. Different orders of these critical events were investigated (e.g., compression-expansion 

critical instant, and slip/stick or slip/reverse slip critical point). Similar subject, but focused on a closed-loop 

structure, was investigated in [37, 40]. Finally, dynamics of walking robots was investigated in [38, 39, 40]. A 

3D multibody model of a quote of a robot was proposed. Special attention was set on limb/ground contact. 

Normal and tangent direction were considered separately. In the tangent one, slip, stick as well as friction force 

were considered. 

In most of the literature presented cases, even when multi constrained systems are considered, there is a 

single impact at a time in the examples attached to the presented theory. If there are some other constraints in the 

system, they are considered (all except of the impacting one) as the bilateral constraints. Simultaneous impacts 

at few unilateral connections are seldom. One of the examples is [41]. Two cases were considered in this paper. 

A single rod with two impact points at its terminus points was the first example. With the same system, and the 

same initial configuration, two different sets of initial velocities (pure vertical translation and rotated vertical 

translation) were considered. Sensitivity of the system was investigated for the differences based on some 

dissimilarity in the sequence of the two impacts. To enforce the required differences, slight difference in 

distances (of micrometers order) was introduced in the models between the colliding points. The research 

confirmed that there is a high sensitivity of the multiple-point collisions on the introduced their initial 

conditions. Small perturbations of the initial normal displacements led to quite different evolutions of the normal 

forces, and consequently, to the different final velocities of the system. Identical conclusion was formulated for 

the next one, more complex planar multibody system, considered as the second example.  
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In the present paper, a triple unilateral contact (points A,B,C in Fig.1a) is considered. The main body of the 

system is at rest, supported at two unilateral contact points (points A and B). As mass of the main body is 

relatively high, these two contacts are preserved during all the pre-impact periods of the calculation. An 

additional arm is attached to the main body (see Fig.1a) and it rotates at a high speed. It impacts the ground in 

the third point (point C) of the triple unilateral contact.  

a) 

A B C 

the main body 
the moving arm 

contact points 

ω 

               

b) 

fA fC 

vC 

 

Fig.  1: Considered system: sketch of its physical model (a); initial contact velocities and the resulting contact forces (b) 

When focusing on details of the considered process, the impulsive force at point C is affecting the arm 

kinematics and the kinematics of the rest of the bodies of the system, as well. According to high stiffness at the 

contact point C, high contact force is present at this contact point. This force grows rapidly and in the initial 

period of the impact it is the only force that has to be considered for calculation of the velocity changes (initial 

velocities at the others contact points are zero, thus there is no impact forces at these point in the initial period) 

Even with the single impact force, high accelerations are detected in the system, as well as finite velocity 

changes in the considered exceptionally small periods of time. As the result of the point C impact, the two 

contact points of the main body (points A and B) behave differently during the considered impact. At the first 

one (point B), positive velocity changes (i.e., directed upward) are present, starting from the beginning of the 

impact (Fig. 2.b). This contact is lost without any impact forces in its region. At the second point (point A), 

negative velocity changes are present. As a result, there are some compressions of the contacting regions and 

some additional impulsive force has to be considered in this contact point (Fig 2.a). When some restitution 

coefficients are recalled, it results in some positive values of these velocities after the end of the period of the 

impacts (Fig 2.c). 

a) 
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b) 
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vC1 

    

c) 

vA2 vB2 
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Fig.  2: Considered system: sketch of its physical model (a); initial contact velocities and the resulting contact forces (b) 

The main question of the present paper is to verify: whether it is possible to model the present situation with 

the rigid body approach or not. The main tested criterion is the sensibility of the result on differences in the 

elastic properties of the contact regions. The rigid body approach should be independent on it, as it was observed 

in the single impact problems. The only necessary data are the initial velocites and the inertial properties of the 

system in this approach. The elastic properties are represented by the restitution coeficients only. Will it be true 

in the present case , too? 

The present paper is divided in eight sections. The one after the actual one sumarrises the main assumptions 

and equations of the used multibody formalism. In Section 3, impulse based formulas are presented. With use of 

these formulas, the joint velocity changes can be correlated directly with the impulses of the contact forces 

present during the impact. It is pointed that the numerical integration can be omitted for this process. Additional 

simplifications are presented. In Section 4, a list of the potential problems is detailed. This list summarise the 

problems dedicated to the presence of the multiple unilateral constraints in a multibody system. In Section 5, 

smoothed contact models are listed. Details of the selected model are presented, too. Description of the 
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considered multibody system is detailed in the subsequent Section 6. In Section 7, results of the performed 

numerical tests are presented. Finally, in Sections 8, conclusions and perspectives are presented. 

2 Employed multibody formalism 

In the paper, the classic modelling method [40, 42] is considered for kinematics and dynamics of the multi-rigid-

body systems (MBS). According to the definitions proposed in the recalled books, inertial rigid bodies are used 

(Fig. 1a) to compose the systems. The introduced bodies can change their relative position and orientations (one 

in respect to another), and the potential changes can be significant. Some of the relative motions are locked, 

however. Elements responsible for locking the possibilities of the relative motions are called physical 

constraints. As a consequence, a concept of neighbour bodies is introduced. It is defined as any pair of the 

bodies that are directly interconnected one to another with use of the abovementioned constraints. For simplicity 

of the modelling, the introduced constraints are considered as massless elements.   

As it was pointed in [40, 42], one-degree-of-freedom connections of prismatic or revolute type are sufficient 

to model the relative motions between the neighbour bodies in any arbitral multibody structure (all the 

potentially possible multi-degrees-of-freedom constraints can be modelled as ordered sequences of the one-

degree-of-freedom connections, accompanied with massless bodies and constraint equations when necessary). 

The aforesaid one-degree-of-freedom connecting elements (when of prismatic or revolute type) are called joints 

(Fig. 3a). Except of the deformability, joints are used to describe propulsion, damping and elasticity features of 

the system, too. Next, with use of the introduced elements (i.e., bodies and joints), the concept of kinematical 

chain (kCh) (Fig. 3a) can be recalled. It is described as an ordered sequence of bodies interconnected by joints. 

Next, recalling the idea presented in [40, 42], joint relative displacements (joint coordinates) are used to 

describe position (motion) of the analysed multibody system. All the joint coordinates are collected in a single 

matrix, q. Elements of this matrix are called the system coordinates (SC) and the matrix itself is called the 

matrix of the system coordinates.  

 

body 

joint kinematical chain 

a) 

            

 

closed loop 

b) 

 

Fig.  3: Considered example multibody system: elements of the considered tree-like multibody system (a);  

closed loop multibody system (b); 

Proposed description is especially useful for the tree like systems, (Fig. 3a) (for any generic body of a 

system announced as a tree like system, composition of the reference kinematic chain is unique, where the 

reference kinematic chain is the chain connecting the generic body with the reference body). The introduced 

description has to be extended in case of the presently considered closed loop systems (Fig. 3b) (in the closed 

loop case, some of the bodies may have a non-unique definition of its reference kinematic chain). When the 

closed-loop structures are present in the considered system, loop cutting procedure is necessary (Fig. 4a). Whit 

use of it, some reference tree structures can be proposed (selection of the reference tree structure is not a unique 

process, in general). Proposed reference structure has to be extended with some related set of the constraint 

equations and the related set of the constraint interactions, too. Details of the potential loop-cutting procedures 

can be found in [40, 42].  

When tree-like structure is considered, its joint coordinates are independent and they are sufficient to 

describe position (motion) of the system, uniquely. In addition, some relative position vectors have be 

introduced to describe positions of selected points at bodies of the considered system. Components of these 
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vector are known in the body fixed frame (i.e., in the moving frame), in general. To combine them together into 

the absolute positions, a single coordinate system (absolute coordinate system) has to be proposed as the 

common system for all the bodies, together. In most of the cases (and in the one considered in the present paper, 

too), it is the coordinate system fixed to the motionless reference body (the base of the multibody system). 

Nerveless of its selection, coordinated of the vector obtained in one of the systems have to be recalculated to its 

components in the second one. It can be done with use of the orientation matrices, A
i
. The two elements 

necessary to calculate components of the absolute positions are expressed by the formulas: 

 ∏ ≤
=

ik:k
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kijji
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where: R 

k – relative orientation matrices for the two neighbour bodies interconnected by joint #k; i
x  –  the 

absolute position of the mass centre of body #i, measured from the origin of the frame fixed to the motionless 

reference body; j
a  – unit vector expressing direction of the translational motion performed in the translational 

joint #j (it is a nonzero vector for the translational joints only, for all the rotational joints its equals zero); p
j
 – 

magnitude of the translation performed in the translational joint #j; kiki
l,d  – relative vectors of the essential 

distances present at the body #k (see Fig. 4b) They can be understood as the contribution of the body #k in the 

length of the reference kinematical chain of body #i; j – number of the direct successor of body #k in the 

reference kinematical chain of body #i.  
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Fig.  4: Cutting procedures: reference tree structure and the cutting place (a); geometrical dimensions present at body #j  

and interactions acting on the cut out body #k (b); 

When time derivatives are developed of the position vectors and the orientation matrices, velocities and 

accelerations (linear and angular) can be written as [40, 42]: 
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where: j
e – unit vector collinear to the axis of its revolution of joint #j (it is a nonzero vector in case of the 

revolute joints and it is the zero vector when translational joints are considered); φ 

k
 – magnitude of the rotation 

angle for the rotations performed in the rotational joint #k. 

Following the idea introduced in [40], tables of vectors are introduced. According to it, Eqs. (2) and (3) can 

be written in some more compact form [40]: 

 qA i1, && ⋅=i
x   ;    qA i2, &⋅=iω  ;      R,ii

xx &&&&&& +⋅= qA i1,  ;     R,ii ωω &&&& +⋅= qA i2,  ,  (4) 

where: q – column matrix of SC; i,i,
,

21 AA – single-row tables with vectors introduced as their elements, they 

collect partial velocity and partial acceleration vectors respectively; R,iR,i
,x ω&&& – “remainders” of the 

accelerations vector dependent on the velocity products. 

To derive the dynamics equations of the considered tree-like structure, all joints of the multibody structure 

are cut out and replaced by the joint interactions (forces and torques), i.e., free body diagrams are proposed for 

each of the bodies of the structure (see Fig. 4b). Then, Newton/Euler dynamics equations are written for each of 

the bodies. It leads to [40, 42]: 
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where: i
m  – mass of the; i

I  – tensor of moments of inertia of the body #i, calculated about the centre of mass of 

the body #i;  ii
t,f – force and torque at the cut point of the joint #i; e

if  – net external force acting at the mass 

centre of the body #i; e
iCt  – net external torque acting at the body #i. 

Proposed dynamics equations (5) are combined with the “tables based” formulas (4) for velocities and 

accelerations of bodies. Next, the direct “successor’ forces and the direct “successors’ torques are eliminated 

from the dynamic equations. It is done with the kinetostatic principle (instead of cutting all the joints above of 

the joint #i, the joint #i is cut itself, but the rest of the joints is preserved in the multibody structure. Only the 

reaction forces at the cut joint #i have to be introduced. The other joint reactions are omitted as they are the 

balanced internal forces of the cut part. For all the linear and angular accelerations present in all the bodies 

located above of the cut joint, their corresponding inertial terms (d’Alembert forces) are introduced and 

balanced with the active interactions of the cut part and the joint reactions at the cut joint #i). According to it, 

and after some rearrangement, the searched interactions at the cut joint #i can be written as [40]: 

 2,i2,i2,i1,1,1, qCqC edtedf
iiiii ++⋅=++⋅=

r
&&

r
&& ;  ,  (6) 

where: i,i,
,

21 CC – a single-row tables with vectors as their elements, they collect partial force vectors and partial 

torque vectors respectively; i,i,
d,d

21
rr

– force and torque “inertial remainders” dependent on the velocity product 

terms, only (gyroscopic torques, Coriolis inertial terms, axifugal inertial terms), i,i,
e,e

21 – net effects based on 

the external forces and external torques acting at all the cut part of the structure located above of the cut joint #i. 

Next, vectors (6) are projected on the joint mobility vector (for the translational joint, the cut joint force is 

projected on i
a  vector and for the revolute joint, the cut joint torque is projected on i

e  vector, respectively). 

Finally, components in front of the joint accelerations are collected in the mass matrix. The result is written as 

[40, 42] 

 QtfqqFqqM ee =+⋅ ),,,( t,)( &&&  ,  (7) 

where: M – mass matrix (n×n matrix); F – column matrix (n×1 matrix) composed of velocity product inertial 

terms;  Q – column matrix composed of joint actuations; fe – column matrix composed of the external forces 

(acting at the bodies of the system); te – column matrix composed of the external torques (acting at the bodies of 

the system); t – time. 

Of course, the introduced formulas are the general formulas for the 3D motion of the system elements. The 

reduced system proposed in the paper is a planar system, thus, some of the vector products present in the 

formula can be simplified as they are the zero terms in the planar case. Even with this simplification it is not 

changing the main idea of the introduced algorithm, significantly. 

Next, as it was pointed in the introduction, our multibody structure is a closed loop structure. Thus, the loop 

cutting procedure is introduced and dynamic equations of the reference tree-like structure are developed. For the 

closed loop structure, they have to be extended with some additional terms based on the constraint interactions. 

To deal with it, the classic Lagrange multipliers technique is employed. Moreover, the obtained dynamic 

equations have to be combined with the algebraic constraint equations [40, 42]. The last have to be expressed at 

three levels simultaneously: at the level of position, velocity and acceleration. It leads to [27]: 

 ;,,,, 0QλqJtfqqFqqM ee =−⋅++⋅ )()t,()t(
T&&&    (8) 

 ;) 0qh =(    (9) 

 ;)() 0qqJqh =⋅= &&(    (10) 

 ,()() 0qqAqqJqh =+⋅= ),( &&&&&    (11) 

where:  h - matrix of constraints functions; J – Jacobian of the constraints functions; λλλλ - Lagrange’s multipliers; 

A – matrix of the velocity quadratic terms. 
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3 Impacts in frictionless multibody systems 

Initially, let us consider a frictionless collision between an element of multibody mechanism and the reference 

body (an obstacle). In its initial pose, configuration is free of the contact. During collision, additional contact 

forces are present in the systems, as well as some additional constraint equations. When a constrained system is 

considered as the pre-collision system (as it is assumed in the example presented in the paper), then the Jacobian 

matrix has to be extended with an additional row of the collision constraint. Influence of the contact force can be 

expressed with use of an additional Lagrange multiplier present in the dynamic equation. Then, this modified 

equation is 

 ;,,,, QλqJtfqqFqqM ee =⋅++⋅ e
T
e )()t,()t( &&&    (12) 

where: λe - a column matrix composed of Lagrange multipliers of the pre-collision constraints and the collision 

contact constraints, together; 
T
eJ  – extended Jacobian of the pre-collision constraints and the collision contact 

constraints, together. 

As it is pointed above, the collision contact begins with a non-zero normal component of the relative 

velocity. But the colliding elements are considered as rigid. Elasticity of the collision contact is high (infinite), 

and thus any deformation of the object is not coherent with the presumption of the rigid nature of the objects, 

even in the closed neighbourhood of the contact point. According to in, the vertical component of the relative 

velocity should be reduced to zero (or even it should invert its signs) in infinitesimal time of the impact. It may 

not be realised by any set of finite forces, thus the contact force should be infinite at the collision contact. From 

the numerical point of view, such event is not predisposed to be integrated numerically. The integration should 

be stopped at an instant before the collision. Fortunately, even with the infinite value of the force, the impulse of 

the considered contact force is finite. To obtain the changes of joint’s velocities, instead of the acceleration based 

form of the dynamic equations, their integrated form has to be employed (i.e. a balance between the impulses 

and the velocity changes [4, 5, 35-38, 40, 41] or impulses and momentums [30]). It leads to: 

 ∫∫∫∫
∆+∆+∆+∆+

⋅=⋅⋅+⋅+⋅⋅
tt

t

tt

t
e

T
e

tt

t

tt

t
dtdt)(dt)t,(dt)t( QλqJtfqqFqqM ee ,,,, &&& ,  (13) 

where ∆t is the infinitesimal duration of the collision. With the infinitesimal duration of the collision, not all the 

integrals are finite. When the integrated quantity is finite, its integrals are infinitesimal and can be neglected. 

Only these multiplied by the infinite quantities have to be considered for future investigations. In the present 

equation, there are two kinds of the quantities of this kind: accelerations and contact forces at the constraints. As 

a consequence, integrals of the external non-contact forces and torques, as well as integrals of the centrifugal, 

the gyroscopic and the other velocity quadratic terms can be neglect in the integrated formula. Next, let us 

remark that presence of the infinite contact force is not restricted to the collision contact points, only. According 

to the kinematical coherence of the accelerations of all the bodies of the multibody system, the infinite 

accelerations may not be restricted to a colliding body of the system, only. To enforce infinite accelerations of 

the rest of the bodies, the impulsive (infinite) forces and torques have to be distributed to the other bodies by the 

joint constraints, too. According to this, the infinite values have to be associated with all the Lagrange 

multipliers present in the (13). Finally, all changes of the joint positions are infinitesimal. As a result, all the 

position dependent matrices of the dynamic equation should be considered as constant. After these 

simplifications (13) can be simplified to [4, 5, 35-38, 40, 41] 

 0=⋅⋅+⋅⋅ ∫∫
∆+∆+ tt

t
e

T
e

tt

t
dt)(dt)t( λqJqqM &&, ,  (14) 

and according to constant values of the mass and Jacobian matrices [4, 5, 35-38, 40, 41] 

 0=⋅⋅+⋅⋅ ∫∫
∆+∆+ tt

t
e

T
e

tt

t
dt)(dt)t( λqJqqM &&, .  (15) 

Thus, the integrated equation of dynamics is [35-38, 40] 

 0=⋅+∆⋅ IqJqqM )()t(
T
e, ,  (16) 
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where:  

 ∫
∆+

⋅=∆
tt

t
dtqq &&    ;             ∫

∆+
⋅=

tt

t
e dtλI   (17) 

and then, the velocity changes can be calculated as [35-38, 40, 43] 

 IJMq ⋅⋅−=∆ − T
e

1 .  (18) 

Of course the velocity changes have to be compatible with the kinematics of the considered multibody 

systems, i.e., all its constraint equations have to be satisfied. According to it, 

 c
e

b
eb qJqJv && ⋅=∧⋅= 0 ,  (19) 

where: vb – components of the collision velocities at the beginning of the contact; bq&  - velocities of the system 

generalized coordinates at the beginning of the contact; cq&  - velocities of the system generalized coordinates at 

the end of the compression. 

Next, components of the changes of the collision velocities can be expressed with two different formulas: 

 qJqJqJvqJvv &&&& ∆⋅=⋅−⋅=−∧⋅−=−=− e
b

e
c

eb
b

ebb 00 .  (20) 

When they are compared, it leads to [35-38, 40] 

 b
ee qJqJ && ⋅−=∆⋅ ,  (21) 

and when (18) is used, ones obtain [35-38, 40] 

 ( ) b
ec

T
ee qJIJMJ &⋅−=⋅⋅⋅− −1 .  (22) 

Thus the impulses of the compression phase can be calculated as [35-38, 40] 

 ( ) b
e

T
eec qJJMJI &⋅⋅⋅⋅=

−− 11 .  (23) 

Next, impulses of the expansion phase are modelled as fractions of the impulses of the compression phase 

(impact dissipation). The fraction is express by a restitution coefficient, R. Its value is positive and less that 1. 

Thus [35-38, 40] 

 ( ) b
e

T
eee R qJJMJI &⋅⋅⋅⋅⋅=

−− 11 ,  (24) 

and the total velocity changes of the system generalized coordinates can be express as [35-38, 40] 

 ( )ec
T
e IIJMq +⋅⋅−=∆ −

Σ
1& .  (25) 

4 Dedicated problems in case of multiple unilateral constraints 

When impact based analysis of collisions is considered, most of the presented papers is dedicated to a single 

unilateral contact. Accepting this limitation of a single colliding point cases, two of the presently considered 

critical questions can be treated as elemental, and they can be answered easily. Number of colliding point is 

evident and with a single compression phase at the single colliding point only, end of this phase can be identified 

easily, as well as the velocities of the point at this essential instant of time. Investigations about simultaneous 

impacts at few unilateral connections are seldom. One of the examples is [41]. Obtained results confirmed that 

the post-impact behaviour is sensible on slight differences in initiation of the impacts when simultaneous 

impacts are present at different contact points. Recalling conclusions of their initial tests, where the two impacts 

were simultaneous, any slight change of the distance between the colliding points (of few micrometers order) 

had disturbed the process and it had led to significantly different post-impact behaviours. The practical 

conclusion addresses that the post-impact behaviour is impossible to predict as the slight differences of the 

distances can be impossible to detect.  
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The presently considered case is different and the problem announced in [41] can be omitted. At the pre-

impact period, all but one of the unilateral contacts point are activated (are in contacts) with finite contact forces. 

At the initial instant of the contact (collision at the last of the unilateral contact point), all unilateral contact 

points are activated, i.e., infinite impulses are possible in all of the contact points. Moreover, they are 

simultaneous from the beginning of the impact. However, according to its unilateral nature, impulses with 

positive senses can be generated at the unilateral contacts, only. The presence of the negative values at the 

matrix calculated from (23) has to be discussed. It looks evident that the negative sign of the impulse indicate 

that some attraction between the contacting points is necessary. It is non-executable in case of unilateral 

constraints. Instead of the impact, separation has to be considered for these points. Corresponding constraint has 

to be eliminated from the list of the impacting elements and matrix (23) has to be calculated again. Elimination 

of the constraint can disturb the previous list of interactions, and the behaviour of the new set of contacts can be 

different. At the new situation, it can lead to a new set of negative values of the impacts at the other contact 

points, next. One of its subsequent solutions can indicate that the contact eliminated previously is activated 

again. In the general case, solution of this problem will need to be equiped with a dedicated algorithm or a 

formula.  

Moreover, in case of the multiple unilateral constraints, definition of the end of the compression phase can 

be problematic, too. Is this instant of time simultaneous for all the impacting points or not? If not, how are 

correlated these instants of the subsequent compressions ends? What are the parameters that can influent the 

differences between the ends of the impacts? Can the differences be included in the impulses based formula 

similar to (25)? 

5 Collisions described with use of the smoothed model of contact 

The impulse based formula similar to (25) is the final target of the researches. With the luck of the answers on 

few of the abovementioned questions, smooth collision is investigated in the present paper, only. Obtained result 

formulates some reference data useful in future investigations.  

In-between different approaches used to model the smooth contact the simplest one is base on some 

hypothetical, a priori considered elasticity of the contact area. Instead of constraint equations, a single spring is 

used to model the contact. Considered elasticity is high in most of these approaches, to prevent against 

significant deformations. Relative penetration is calculated and multiplied with the supposed elasticity to 

evaluate the contact force. To model some limited restitution coefficient, the initial spring element is extended to 

spring-damping (spring/dashpot) contact model [31, 43] with some arbitrary selected damping coefficient. 

Resulting model is called as the Kelvin–Voigt contact model. The linear Kelvin–Voigt contact model is not the 

only example of the a priori considered analytical formulas used in calculation of the contact forces. Classical 

Hertzian contact theory is one of these approaches, too [19, 20, 32]. Other dedicated formulas were proposed in 

[33]. More detail investigations of the contact forces are connected with used of the finite elements modelling of 

the contact regions. This method was considered in [29, 34, 43] 

In the present paper, the simplest, elastic model of the contact is considered for calculations. Different 

values of the elasticity coefficient are tested, to verify the sensibility of the results on the relation between the 

elasticity coefficients at different contact points. To introduce the limited restitution properties, hysteresis of the 

elasticity component, c, is considered instead of the viscous damping. For positive values of the normal velocity 

(compression) considered contact forces are describe by the formula 

 AAnA ycf ∆⋅−= ,  (26) 

where ∆yA is the relative penetration of the colliding bodies. The formula is activated for the positive relative 

penetrations only. For the negative relative penetrations, the contact force is zero for both cases of the velocities. 

For negative values of the normal velocity (expansion) considered reduced contact forces are describe by the 

formula extended with the force restitution coefficient, Rf, 

 
fAAAnA Rycf ⋅∆⋅−= .  (27) 

Identical formulas are used for all the three contact points: A, B and C. Their elasticity components, c, as well as 

their restitution coefficients, Rf, can be different. Their selection depends on the objective of the performed test. 
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6 Considered multibody model with multiple unilateral constraints  

Concerning its reference structure, considered multibody system is composed of two material bodies (see Fig. 

5a): the main body #3 and the moving arm #4. To obtain the total planar mobility of the main body, it is 

connected with the reference with use of a complex joint modeled as a sequence of three elementary joints 

interconnected by two point-like massless bodies #1 and #2. The used sequence is T1/T2/R3 (horizontal 

translation/vertical translation/rotation). Two corners of the main body are considered as fixed by the unilateral 

contact constraints (points A and B in Fig. 1a and constraints ucA and ucB in Fig. 5a). Considered mass of the 

main body equals m3 = 10 kg. Its moment of inertia equals I3= 0.1 kg·m
2
. Position of the mass center is 

coinciding with the revolute joint connecting the main body with its preceding point body #2. The main 

geometrical parameters of this body and its contact points are presented in Fig. 5c. 

The moving arm #4 is connected to the main body by use of the revolute joint. It rotates with relatively high 

speed. Its inertial terms are not high (in compare to the gravity force of the main body). Presence of these 

inertial terms is not able to disturb the ground contacts at pints A and B of the main body. The arm is fixed to the 

main body by a revolute joint. Coordinates of this joints are l34x =0.15 m and l34y = 0.1 m from the revolute joint 

that connects the main body with its preceding point body #2. Considered mass of the moving arm equals m4 = 2 

kg. Its moment of inertia equals I3= 0.043 kg·m
2
. The mass center, C4, coordinates are l44x =0.2 m and l44y = –

0.08 m from the joint connecting the arm with the main body. Coordinates of the impact point C are l4Cx =0.3 m 

and l4Cy = –0.2 m from the joint connecting the arm with the main body. 
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Fig.  5: Multibody structure of the considered system: reference structure (a); the modified structure devoted to model the smoothed 

contacts (b); the main geometrical parameters (c)  

The presently considered investigation is restricted to results of the moving arm impact. Its point C reaches 

the ground and thus a collision appears. The system reactions are investigated for impact between the moving 

arm and the ground (the reference). Point C at the end of the moving arm reaches the ground (its vertical 

coordinate yg is assumed as equal zero). Simultaneously two of the main body points are in contact with the 

ground, too (i.e., points A and B in Fig. 1a and constraints ucA and ucB in Fig. 5a). As the smoothed contact 

model is considered, detail information is necessary about the actual positions of the moving arm end point and 

the two corners of the main body, too. To deal with it, the initial multibody structure (Fig. 5a) is extended. Three 

identical closed loop chains are started at points A, B and C respectively (Fig. 5b). Each of them is composed of 

three point bodies (massless connecting elements), connected by a sequence of the rotational, the vertical, and 

the horizontal joints. Finally, the last body of each of these chains is connected to the reference by a spherical 

joint constraint (SC at Fig. 5b). When kinematics of these closed loop constraints is solved, the joint 

displacements at the vertical joints of these loops correspond to the relative penetrations between the considered 

points and the ground. Corresponding contact forces are calculated from (26) or (27). They are introduced to the 

system as the joint forces in the corresponding closed loops vertical joints.   

7 Performed tests 

To obtain the necessary knowledge about the considered phenomena, a series of numerical tests is 

performed. Obtained dynamics equations are integrated numerically in MATLAB [44]. In the considered initial 

configuration, the main body is located horizontally. The moving arm is rotated back in its revolute joint. Its 

initial rotation angle is q4(0) = 2 rad. Its rotational speed is qp4(0) = 20 rad/s. ODE45 integration procedure is 
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used. Integrated period is from 0 to 0.15 s. To obtain relatively smooth figures, maximal time step is limited to 

10
-4 s. Initial time step is 10

-4 s, too. Relative accuracy is set to 10
-4, and the absolute is set to 10

-6.  

Initially, the general behaviour of the considered system is considered. Identical elasticity coefficients of 10
6
 

N/m are supposed in all the contact point and the relative penetration is investigated for all the three contact 

points. As we can see in Fig 6, the arm bits the ground at about 0.1 s. The co-impact takes place in point A only 

(positive relative penetration and positive velocity of motion). Point B is free of the co-impact. From the 

beginning of the impact, its velocity evolves to negative values (Fig. 7) and the relative penetration does not 

reach the positive values during the impact, at all. The main impact at point C results in about 3 time higher 

penetration then in the co-impacting point A. It is more rapid too. Its duration is about 2 times shorter then the 

duration of the co-impact. At the beginning of the impact, the co-impacting point A move slowly (its penetration 

is relatively slow, as well as the initial velocities).  
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Fig.  6: Relative penetration between the colliding bodies and the ground: contact point A (a); contact point B (b); contact point C (c)  
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Fig.  7: Velocities of the relative penetration between the colliding bodies and the ground: contact point A (a); contact point B (b);  

contact point C (c)  

In the next test, some elastic (non-dissipating) contacts are considered, only. Supposing identical elasticity 

coefficient of 10
6
 N/m at joint #12 (the moving arm contact point C), three different values of the elasticity 

coefficients are considered at joint #6 (at point A): c1A= 10
6 N/m, c2A= 4·10

6 N/m, c3A= 16·10
6 N/m. Relative 

penetrations as well as the velocities of the relative penetrations are observed. Comparing the time evolution of 

the penetration, displacements at point C (i.e., displacements at joint #12) are almost identical (Fig. 8). By 

contra, time evolutions of the penetrations at point A are influenced significantly by modifications of the 

elasticity. To illustrate it better in the figure, they are normalized to identical sizes by the factor thath expresses 

correlation between the elasticity components. Duration of the penetration process depend significantly on the 

elasticity. It could be noted easily, that areas under the positive parts of these characteristics (identical to the 

impulses of the forces), are not identical, too. The obtained pre-impact and the post-impact velocities are 

visualised in Fig. 9. As it can be seen easily in Fig. 9a, post impact velocities at the point A are not identical. 

They depend significantly on supposed elasticity. By contra, post impact velocities are almost identical at point 

C (see Fig. 9b). To visualise the difference, a zoom at the post-impact velocities is necessary (Fig. 9c). 
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Fig.  8: Relative penetration between the colliding bodies and the ground: c1A= 106 N/m (a); c2A= 4·106 N/m; c3A= 16·106 N/m (c)  
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Fig.  9: Velocities of the relative penetration between the colliding bodies and the ground: contact point A (a); contact point C (b);  

contact point C (zoom) (c)  

Investigating the source of the differences, an additional test is performed. As previously three different 

values of the elasticity coefficients are considered: c1= 10
6
 N/m, c2= 4·10

6
 N/m, c3= 16·10

6
 N/m. By contra to 

previous case, identical elasticity coefficients are considered at both of the colliding point (at a given test, 

coefficients at point A and at point C are identical). As we can see in Fig. 10, post-impact velocities are identical 

in the present case. The only difference is the duration of the impact. It certified that the critical parameter is the 

proportion between the elasticity coefficient at point A and C and not the value of the coefficient itself.  
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Fig.  10: Velocities of the relative penetration between the colliding bodies and the ground: contact point A (a); contact point C (b);  

In the final test, influence of the restitution coefficient is tested. Again, supposing identical elasticity 

coefficient of 10
6
 N/m at joint #12 (the moving arm contact point C), three different values of the elasticity 

coefficients are considered at joint #6 (at point A): c1A= 10
6 N/m, c2A= 4·10

6 N/m, c3A= 16·10
6 N/m. Velocities of 

the relative penetrations are observed. Considered force restitution coefficient equals 0.8. Identical value of this 

coefficient is considered at both of the colliding points (at point A and at point C). Obtained time evolutions are 

presented in Fig. 11. Evolutions of these characteristics are in closed similarity to the characteristics of the 

ideally elastic (no dissipating) impact presented in Fig. 9. Of course, because of the force hysteresis, the 

presently obtained post impact velocities are smaller in compare to these presented in Fig. 9. 
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Fig.  11: Velocities of the relative penetration between the colliding bodies and the ground: contact point A (a); contact point C (b);  

8 Conclusions and perspectives 

When speaking about impacts in multibody systems, our impressions direct us to some negative events that have 

to be avoided. However, there are some intentionally expected impacts in multibody structures, too, e.g., the grip 

of a manipulation object; the waking robot contact with the ground, or placement of the manipulation object in 

its final position.  

Impacts are not easy for modeling in multibody programs. They do not fit well to the main assumptions of 

the multibody domain. In most of the cases, modeled elements (i.e., bodies) are considered as rigid. Such 

presumption is difficult to preserve in case of impacts. It causes difficulties in the contact force estimation, too. 

Constraint description has to express the introduced discontinuity in the description of the contact. 

As it is pointed above, the collision contact begins with a non-zero normal component of the relative 

velocity. But, elasticity of the collision contact is high (infinite). According to in, the vertical component of the 

relative velocity should be reduced to zero (or even it should invert its signs) in infinitesimal time of the impact. 

It may not be realised by any set of small finite forces, thus the contact force at the collision contact should be 

high (or even infinite). From the numerical point of view, such event is not predisposed to be integrated 

numerically. Fortunately, the impulse of the considered contact force is finite. To obtain the changes of joint’s 

velocities, the integrated form of the dynamics equations may be employed (i.e. a balance between the impulses 

and the velocity changes) instead of the acceleration based form of the dynamic equations. This technique is 

numerically effective and attractive, and it is tested for a significant number of examples published in literature.  

The impulse based formula is the final target of the researches. With the luck of the answers on few of the 

critical questions, smooth collision is investigated in the present paper, only. A system with three simultaneous 

unilateral contacts is considered. The presently considered investigation is restricted to results of the moving 

arm impact. The two other contact points (the contact points at the main body corners) behaves differently 

during the impact. The co-impact is present in one of the points, only. The other is free of the co-impact. From 

the beginning of the impact, its velocity evolves to negative values and the relative penetration does not reach 

the positive values during the impact. The main impact at the point of the moving arm results in about 3 time 

higher penetration then the one in the co-impacting point. It is more rapid too. Its duration is about 2 times 

shorter then the duration of the co-impact. At the beginning of the impact, the co-impacting point move slowly 

(its initial penetration is relatively slow, as well as the initial velocities).  

Supposing identical elasticity coefficient at the moving arm contact, different values of the elasticity 

coefficients are considered at joint main body contact. Time evolutions of the penetrations at the moving arm 

contact are almost identical (Fig. 8). By contra, time evolutions of the penetrations at main body contact are 

influenced significantly by modifications of the elasticity. Moreover, duration of the penetration process depend 

significantly on the elasticity, too. It could be noted easily, that areas under the positive parts of these 

characteristics (identical to the impulses of the forces), are not identical, too. Obtained post impact velocities at 

the main body contact are not identical. They depend significantly on supposed elasticity. By contra, post-impact 

velocities are almost identical at the moving arm contact. To visualise the difference, zoom at the post-impact 

velocities is necessary.  

When identical elasticity coefficients are considered at both of the colliding point, post-impact velocities are 

identical. The only difference is the duration of the impact. It certified that the critical parameter is the 

proportion between the elasticity coefficient at the colliding points, and not the value of the coefficient itself.  
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When force restitution coefficient is considered, evolutions of the velocity characteristics are in closed 

similarity to the characteristics of the ideally elastic (no dissipating) impact. Of course, because of the force 

hysteresis, the post-impact velocities are smaller in compare to these from the ideally elastic (no dissipating) 

impact. 

Finally, it has to be pointed that application of the impulse based analysis can be problematic in case of 

multiple unilateral contacts. By contra to the classic case of a single unilateral contact, the presently obtained 

results have certified that the necessary equations have to be more complex in the present case. Proportion 

between the elasticity coefficients at different points has to be included as a parameter in the future equations. 

Moreover, the presently considered model is a simplified model, where the contact model is represented by a 

single, constant elasticity coefficient only. In case of more complex models (e.g., Hertzian contact theory), 

obtained relations may be more complex in compare to these obtained in the present investigations. Additional 

test are necessary, before formulation of the required impulse based formulas.  
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