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ABSTRACT — A new contact model which takes account of the normal and the tangential 

compliance of the local contact zone is proposed to depict the oblique impact effect for the flexible 

robotic finger system in this paper. The criteria for different motion processes for the local 

compliant contact model (LCCM) is also established. By the use of the proposed LCCM 

incorporating with absolute nodal coordinate formulation (ANCF), the oblique impact mechanism 

is analyzed. The results show that multiple transitions between compression and restitution in 

normal direction appear through an oblique impact event. There exist two motion modes: 1) three 

times of slip compression-slip restitution when μ≤0.8; 2) stick compression-stick restitution-slip 

restitution-slip compression-slip restitution when μ≥1.2. In addition, it also shows that falling 

height, coefficient of friction and energetic coefficient of restitution all have a significant effect on 

the peak value of contact force and the duration time of contact. 

1 Introduction 

One of the greatest challenges in controlling robotic hands is grasping and manipulating objects in 

unstructured and uncertain environment[1]. The traditional robotic hands are typically too rigid to prevent 

unexpected impact and subsequent damage. Due to the passive compliance and damping, the flexible robotic 

hands have great versatility and robustness. The flexible robotic hands are very suitable for the unstructured and 

uncertain environment. Like the rigid robotic hands, the oblique impact with friction will happen inevitably 

when a flexible robotic hand grasps things. It will bring vibration with high frequency, the propagation of the 

transient waves and high amplitude contact force. In the case of repeated impacts, the nonlinear characteristics 

of periodic motions, quasi-periodic motions, and chaotic motions sometimes will occur in the system. Those 

characteristics all will lead to many adverse effects such as structural failure, noise increasing and safety 

decreasing[2]. These phenomenon are similar to oblique impact of vibration of skew bridges[3], metal explosion[4], 

and etc. 

When an oblique impact occurs, the impact structure does not only have a unilateral constraint in the normal 

direction of the contact surface, but also a frictional constraint in the tangential direction. Djerassi[5] proposes the 

Stronge’s collision hypothesis together with Routh’s semi-graphical method to derive an analytical solution to 

the problem of the oblique impact. Pfeiffer[6] experimentally investigates the energy of a rubber disc oblique 

impact against a roughness ground. It shows that the energy loss is resulted from that there is a residual 

deformation at the local contact zone after the impact. The tangential deformation of the contact zone has a 

significant effect the impact responses of the system. Shen and Stronge[7] propose a lumped parameter contact 

model which can analyze the reverse sliding of the contact point, and then discuss the effect of contact 

compliance on the tangential velocity and contact force at the contact point. However, they only take the 

compliance of the local contact zone into account, the rest of the link is still treated as rigid body. Zaidi[8] 

proposes a nonlinear mass-spring contact model which is similar to Shen and Stronge’s. By the use of the 

contact model, the tangential and normal contact deformation during slip and stick state is calculated, which is 
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caused by the rigid finger grasping the flexible object. The transient characteristics in the initial phase of the 

grasping are neglected. The minimum contact forces are obtained when the hand in a stable grasping state. 

However, the transient characteristics cannot be ignored once the robotic hand is flexible enough. 

In this paper, considering the normal contact compliance and tangential contact compliance, a hybrid 

analytical model is proposed to study the oblique impact of the flexible robotic finger system. The research 

focuses on analyzing the tangential and normal relative motion state between fingertip and ground and obtaining 

the high amplitude contact forces during the oblique impact. In Section 2, the ANCF is used to discrete the 

deformation field and inertia filed of the finger structure. The hybrid analytical model is introduced and the 

control equations of the system are derived. In Section 3, the criteria for different motion processes are 

established, then the numerical integration method is given. In Section 4, various groups of flexible robotic 

finger system under different parameters are simulated. 

2 Hybrid analytical model and control equations 

In order to further study the oblique impact effect of the flexible robotic finger system, a hybrid analytical 

model is developed (see Fig. 1). The hybrid analytical model is composed of a flexible robotic finger system 

model, a LCCM[9] and a Coulomb friction model. And the flexible robotic finger system is consisted of three 

flexible links with a half-spherical contact end. Point O is a fixed hinge, and each two phalanges are connected 

by a revolute joint (see Fig. 1(a)). The finger system is initially in horizontal state, and it will be free falling 

driven by gravity. Once the drop height of contact end is equal to H, oblique impact occurs with a rigid ground 

which having a certain roughness. In the following, the control equations based on ANCF for the flexible robotic 

finger system are derived. 
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Fig. 1: Hybrid analytical model for flexible robotic finger system with oblique impact 

2.1 Control equations of a single beam element 

The one-dimensional two-node Euler beam element is used to discrete the finger system with neglecting the 

inertial moment and shearing effect of the cross-section. The finger system is divided into N elements, and the 

deformation of a single Euler beam element is shown in Fig. 2. 
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Fig. 2 The deformation of a single Euler beam element 
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The global position vector r for an arbitrary point on the Euler beam element is expressed as 

 
er Sq   (1) 

where qe is the vector of element nodal co-ordinates:  
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S is the global shape function which has a complete set of rigid-body modes, and it can be written as 
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S   (3) 

where the functions si=si(ξ) (i=1,2,3,4) are defined as 

 
2 3

1 1 3 2s ξ ξ   ,  2 3

2 ( 2 )s l ξ ξ ξ   , 2 3

3 3 2s ξ ξ  ,  3 2

4s l ξ ξ   (4) 

and ξ=x/l. The kinetic energy Te of the element can be written as 

 T T

e e e e

1 1
d

2 2V
T V  r r q M q   (5) 

where Me is mass matrix, which can be written as 

 T

e
0

d
l

A x M S S   (6) 

here, ρ and A, respectively, are the density and cross section of the flexible link. 

The strain energy Ue of the element is 

  2 2 T

e l t l e l t e
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d
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l
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where E is Young's modulus, I is the inertial moment of cross-sectional area. Ul and Ut are the longitudinal strain 

energy and transversal strain energy of the Euler beam element, respectively. And the longitudinal strain εl and 

curvature κ are described in following equation 
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where Sl=S'S. Therefore the longitudinal stiffness matrix Kl and transversal stiffness matrix Kt are described as 

  T

l l e e l l
0 0

1
d d

2

l l

EA x x  K S q q S S   (9) 
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t
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d
l

EI x  K S S   (10) 

Then the global stiffness matrix Ke is 

 e l t K K K   (11) 

When the finger system and the rigid ground are in a separation stage, the flexible finger system is only 

affected by gravity, and the general external force matrix Qe of the Euler beam element is 

 T

e
0

0
d

l

A x
g


 

  
 

Q S   (12) 

where g is the acceleration of gravity. 

Subsequently, equations (5), (7) and (12) into the second Lagrange equation, the dynamic equation of the 

finite element can be obtained in a matrix form as 

 e e e e eM q K q Q   (13) 

where 
eq  is the acceleration vector of the Euler beam element. 
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2.2 Control equations of flexible finger system 

(1) Control equations 

Based on the original dynamic equations, the differential algebraic equations of ANCF for multi-body 

system dynamics is derived by combining with the Lagrange multiplier method. The final dynamic equation is 

 T  λMq Φ Kq Q   (14) 

where M, K and Φ are mass matrix, stiffness matrix and displacement’s constraint matrix of the flexible finger 

system, respectively. λ is the Lagrange multiplier, Q is generalized external force. q is the generalized 

coordinates of the system. 

When the fingertip and the rigid ground are in contact stage, the final dynamic equation will change, and it 

can be written as 

 T    λMq Φ Kq Q   (15) 

where 

 
c

  Q Q F   (16) 

where Fc represents the contact forces, and it typically consists of normal and tangential contact forces. The 

normal and tangential contact forces can be calculated by the LCCM (see Fig. 1(b)) and Coulomb friction model 

(see Fig. 1(c)). 

(2) Local complaint contact model (LCCM) 

For the problem of fingertip contacts with the rigid ground, the contact points R and R' are located at the 

fingertip and the rigid ground, respectively (see Fig. 1(a)). The absolute displacement of contact point R is 

 
T

R x yU  and the absolute displacement of contact point R is  
T

R 0 0 U , the relative displacement 

between R and R' is  
T

RR x y U . Meanwhile, there exist a set of contact forces  
T

t nF FF  and 

 
T

t nF F  F  at the contact points R and R', respectively. Let the contact points first touch at an instance of 

time, t=0. The normal relative velocity between R and R',  y t , remains negative during the period of 

compression which ends at time tc where  c 0y t  . 

In the LCCM (see Fig. 1(b)), the bilinear compliant element in normal direction and linear compliant 

element in tangential direction are used to describe the deformation of the contact zone. These elements are 

connected to a massless particle P which can either stick or slide on the rigid ground. The absolute displacement 

of particle P is 
T

P x yu u    U , the relative displacement between R' and P is 
T

PR P R x yu u 
      U U U , and 

the relative displacement between R and P is 
T

RP R P x yu u     U U U , where ux and uy are the deformation 

of the normal and tangential compliant element. Let 
t xv u  and n yv u  in order to conveniently express the rate 

of extension of the compliant elements, 
tV x  and 

nV y  in order to conveniently express the rate of relative 

velocity between contact points R and R'.  

The bilinear normal compliant element has stiffness k during an initial period of compression and 

subsequently, a stiffness k 2

*e  during restitution (
*e  is the Stronge’s energetic coefficient of restitution). When 

the particle P is in slip state, the relationship between normal and tangential contact forces is governed the 

Coulomb law. 

 
 

 

n c

2 2

n * * c c f

0 compression

( 1) restitution

y

y y

F ku t t

F ke u k e u t t t 

     


      

  (17) 

  t n 0 fF s F t t      (18) 

where tc is the time of transition from compression to restitution, tf is the time of separation, and 

 1

c n cyu k F t   is the maximum normal compression.    t tsgn sgnxs u V v    represents the motion 

direction of the particle P. And 
xu  is the velocity of the particle P. μ is the coefficient of friction between the 

particle P and the rigid ground. 
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When the particle P is in stick state, the tangential contact force is 

  2

t 0x fF k u t t      (19) 

where η-2 is the ratio of tangential to normal stiffness. Formula (17) gives the loading-unloading hysteresis loop 

of the normal contact force as shown in Fig. 3. And the hysteresis of normal force results in a terminal 

indentation    2

f * c1y yu t e u  . 

It should be noted that the large bending compliance of the finger structure leads to the deformation of the 

local contact zone in the normal direction frequently occur multiple transitions between compression and 

restitution before separation. The slope of the curve of force-deflection for the subseqent compression and 

restitution is the same as those for the first compression and restitution, respectively. 
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Fig. 3: Force-deflection relations for normal compliant element 

3 Criteria for different motion processes and numerical integration method 

3.1 Criteria for different motion processes 

When the finger system falls freely from the initial position to a collision with a rigid ground, there will be a 

transition between slip and stick state in tangential direction as well as a transition between the compression and 

restitution state in normal direction. When the fingertip’s tangential direction is in slip state and normal direction 

is in compression state, we call the fingertip is in the state of slip compression.  

Here we assume the impact begins at time t=0. The following criteria can be used to determine the initial 

state of the system, the transition time tc from compression to restitution, the transition time t01 from stick to slip 

and the transition time t10 from slip to stick, respectively. 

(1) Free falling 

When the finger system is in free falling, the value of normal position for fingertip is must less than the 

falling height H, 

 y H   (20) 

(2) Initial state 

At initial time (t=0), the contact is in compression and either initial stick or slip. With the Amontons-

Coulomb friction law, an upper bound on the angle of incidence for initial stick can be obtained by assuming 

initial slip and finding the time t10 when initial slip is brought to rest. Then taking the limit as t10
 close to0, the 

upper limit of the ratio of tangential to normal incident velocity for initial stick is obtained. The upper bound for 

initial stick is 
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2

t n(0) / (0)V V    (21) 

(3) Compression or restitution 

In the initial period of impact, the contact is in compression. Compression ends and restitution begins at a 

transition time tc when the normal relative velocity vanishes, 

 
n ( ) 0cv t    (22) 

(4) Stick or slip 

During stick |Ft(t) |≤μFn(t). If the system is in a state of stick, the time of transition from stick to slip t01 can 

be obtained by finding the time when the ratio of tangential to normal contact force equals the coefficient of 

friction. In addition, stick-slip transition requires that at time t01, continuation of stick would result in a ratio of 

forces outside the cone of friction 

 t 01

n 01

( )

( )

F t

F t
 , t 01 t 01( ) ( ) 0F t F t   (23) 

Alternatively, if the system is in a state of slip, the time of transition from slip to stick t10, is obtained by 

considering the speed of slip  x t  and finding the time when the speed of slip is slowed by friction until it 

vanishes t10, 

 
10 t 10 t 10( ) ( ) ( ) 0xu t V t v t      (24) 

(5) Separation 

At time tf-ε the normal contact force is positive, Fn(tf-ε)>0, where ε is a infinite small positive value. The 

impact terminates at time tf when the normal contact force vanishes, 

 n ( ) 0fF t    (25) 

3.2 Numerical integration method 

For the equation (15), the generalized-α method is used to slove this equation in this paper. The recurrence 

formula of generalized-α method is 

   2 2

1 10.5n n n n nt t t         q q q a a   (26) 

 
1 1(1 )n n n nt t     q q a a   (27) 

where Δt is the time step, αm=(2ξ-1)/(ξ+1), and αf=ξ/(ξ+1). Vector a has the following relations 

 
   1 1

0 0

1 1m n m n f n f n    
     




a a q q

a q
  (28) 

where β=(1+αf -αm)2/4, γ=0.5+αf -αm. ξ[0 1], is the spectral radius of the algorithm. The smaller the ξ, the higher 

the energy dissipation. When ξ is equal to zero, the system will produce maximum energy dissipation, and the 

generalized-α method will be degenerated to Newmark integration method; when ξ is equal to one, the system 

will maintain energy without dissipating, and the generalized-α method will be degenerated to gradient 

algorithm. 

4 Numerical results 

To analyze the influence of H, μ and e* on the oblique impact event, we choose the three groups of flexible 

robotic finger system: 1) H=0.96m, 1.00m and 1.04m when μ=0.4 and 
*e =1; 2) 

*e =0.6, 0.8 and 1 when μ=0.4 

and H=1.00m; 3) μ=0.4, 0.6, 0.8, 1.2, 1.4 and 1.6 when H=1.00m and 
*e =1. Meanwhile, the elastic modulus E, 
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the cross-sectional area A, the moment of inertia I, and the density ρ of links are 70GPa, 5×10-4m2, 2×10-8m4, 

2700kg/m3, respectively. The length of i-th link li (i=1,2,3) is 0.4m. 

4.1 Contact forces 
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*e =1                                                          (b) μ=0.4, H=1m 
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Fig. 4: Normal and tangential contact forces 

Tab. 2: Peak value of contact forces 

Contat forces 

(kN) 

peak 

value 
*e  (H=1m, μ=0.4)   H (μ=0.4, 

*e =1) μ (H=1m, 
*e =1) 

0.6 0.8 1.0 0.96m 1.00m 1.04m 0.4 0.6 0.8 1.2 1.4 1.6 

Fn 

1st  5.07 5.07 5.07 5.07 5.22 5.07 5.07 4.76 4.48 4.28 4.28 4.28 

2nd  1.80 1.73 1.50 1.50 1.33 1.50 1.50 1.58 1.61 1.56 1.49 1.42 

3rd  2.77 2.57 2.36 2.35 2.45 2.36 2.36 2.38 2.45 - - - 

Ft 

1st  2.03 2.03 2.03 2.03 2.09 2.03 2.03 2.85 3.58 4.92 4.96 4.96 

2nd  0.72 0.70 0.60 0.60 0.53 0.60 0.60 0.95 1.29 1.88 2.08 2.26 

3rd  1.11 1.03 0.94 0.94 0.98 0.94 0.94 1.43 1.96 - - - 

Figs. 4(a), (b) are the normal and tangential contact force curves with parameters of groups 1) and 2), 

respectively. It is shown that each normal and tangential contact force curve has three peaks. Figs. 4(c) and (d) 

are the normal and tangential contact force curves with parameters of group 3). The results show that each 

normal and tangential contact force curve has three peaks when μ<0.8, but the curve has two peaks when μ>1.2. 

Tab. 2 is the peak value of contact forces. Fig. 4(a) shows that the 1st peak value of Fn and Ft will increase as 

increasing H. Comparing with those of H=0.96m, the 1st peak value will increase 4% for H=1m and 7% for 

H=1.04m. Moreover, the 2nd peak value of the Fn and Ft will increase as increasing H. The 3rd peak value will 

increase firstly, and then decrease as increasing H. 
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Fig. 4(b) shows that 
*e  has no strong influence on the 1st peak value of Fn and Ft, but the 2nd and 3rd peak 

value will be changed obviously. The reason is in the compression period of impact, 
*e  will not play any role 

when calculating Fn according to the formula (23). 

Fig. 4(c) shows that the 1st peak value of Fn will decrease as increasing μ, on the contrary, the 1st peak value 

of Ft will increase as increasing μ. That is because the there is a large increment of μ, which leads to Fc=μFn still 

increases even though Fn decreases. Comparing with those of μ=0.4, when μ=0.6, the 1st peak value of Fn will 

decrease 6%, but the 1st peak value of Ft will increase 4%. When μ=0.8, the 1st peak value of Fn will decrease 

12%, but the 1st peak value of Ft will increase 8%. The 2nd and 3rd peak value of Fn and Ft will increase with 

the increasing of μ. Be different from Fig. 4(c), Fig. 4(d) shows that the 1st peak value of Fn keeps invariant as 

increasing μ when μ≥1.2. That is due to the fingertip is in the stick state during the initial period. 

4.2 Multiple transitions between compression and restitution 
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Fig. 5: Deformation curves of normal compliant element 

Fig. 5 is the deformation curves of normal compliant element under different parameters. It is shown that 

when the deformation decreases, the fingertip is in the compression state, conversely, the fingertip is in 

restitution state. Figs. 5(a), (b) and (c) all show that the fingertip will experience three times transitions between 

compression and restitution in an oblique impact event, this is resulted from the structural bending compliance 

of the whole link. Fig. 5(d) shows that if it is in the stick state initially, the fingertip will only has two times 

transitions from compression and restitution. 

From Fig. 5(b), it can be found that the 1st compression will experience the same time with different 
*e , the 

duration time is 0.069ms. The duration times of the 1st restitution are 0.084ms for 
*e =0.6, 0.108ms for 

*e =0.8 

and 0.162ms for 
*e =1.0, respectively. Simultaneously, the duration times of the 2nd compression are 0.135ms 

for 
*e =0.6, 0.177ms for 

*e =0.8 and 0.068ms for 
*e =1.0, respectively. The duration times of the 2nd restitution 

are 0.068ms for 
*e =0.6, 0.072ms for 

*e =0.8 and 0.071ms for 
*e =1.0, respectively. The duration times of the 3rd 



9 

 

compression are 0.206ms for 
*e =0.6, 0.102ms for 

*e =0.8, and 0.101ms for 
*e =1.0, respectively. The duration 

times of the 3rd restitution are 0.244ms for 
*e =0.6, 0.127ms for 

*e =0.8 and 0.079ms for 
*e =1.0, respectively. 

4.3 Stick-slip motion and trajectory of fingertip 
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Fig. 6: Tangential velocity of particle P 

Fig. 6 is the tangential velocity curves of particle P. According to Section 3.1, when the tangential velocity 

of particle P is equal to zero, the fingertip is in the stick state, conversely, it is in slip state. Figs. 6(a), (b) and (c) 

all show that the fingertip is always in slip state. Fig. 6(d) shows that the fingertip is in the stick state in the intial 

period. Meanwhile, Fig. 6(d) shows that the duration time of stick state will increase as increasing μ. Concretely, 

the duration time is 0.07ms for μ=1.2, 0.083ms for μ=1.4 and 0.092ms for μ=1.6, respectively. 
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Fig. 7: Trajectory of fingertip( (a) H=1, μ=0.4 (b) H=1m, 
*e =1 (c) H=1m, 

*e =1) 

Fig. 7 is the trajectory of fingertip under different parameters. When the absolute position of Y direction 

decreaes, the fingertip is in a compression state, and when the absolute position of Y direction starts increasing, 

fingertip will enter into the restitution state. The sliding distance of fingertip before separation will decrease as 

increasing 
*e  and μ.  

5 Conclusions 

Considering the normal contact compliance and tangential contact compliance, a hybrid analytical model is 

proposed to study the oblique impact of the flexible robotic finger system in this paper. The absolute nodal 

coordinate formulation (ANCF) is used to discrete the deformation field and inertia filed of the finger structure. 

The numerical result shows that be different from the hard body, the large structural compliance of the finger 

cause the normal relative motion will experience multiple transitions between the compression state and the 

restitution state during an oblique impact event. There are two motion modes: 1) three times of slip compression-

slip restitution when μ<0.8; 2) stick compression-stick restitution-slip restitution-slip compression-slip 

restitution when μ≥1.2.    

Moreover, the results also show that the 1st peak value of the normal contact force will decrease as 

increasing μ when μ<0.8, on the contrary, the 1st peak value of the tangential contact force will increase. It also 

can be found that the 1st peak value of the normal and tangential contact forces will increase as increasing H. 
*e  

has no effect on the 1st peak value of contact force, but the 2nd and 3rd peak value will be changed obviously. 

Besides, the duration time of an oblique impact event will decrease as increasing μ or decreasing H and 
*e . The 

last, the sliding distance of fingertip before separation will decrease as increasing 
*e  and μ. 
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