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ABSTRACT The paper presents a strategy to model the transient behavior of spur gears accounting for
EHL contacts by means of analytic fomulation. The contact modeling technique is then integrated with
an FE-based approach to model the compliance of the gear bodies. The methodology is implemented
in the Siemens PLM multibody Motion solver and the results are compared against experimental test
data acquired on a back-to-back test-rig.

1 Introduction

Mechanical transmissions are responsible for significant noise generation and power losses in automotive and wind
energy applications. New regulations on pollution in terms of noises and the ever increasing demands for improved
energy efficiency and increased power density are pushing the developments in gearboxes to lighter, more efficient
and more silent designs. On the other hand, little is known about loss mechanisms and their effect on other cru-
cial performance attributes such as noise and durability. A solution lies in the development and improvement of
computational tools that predict the drivetrain system-level dynamics. One of the basic components of a transmis-
sion system are gears. In the vast majority of the cases, vibrations in a single rotating gear turn out to be above
the audible hearing range (20 Hz to 20 KHz) which makes its dynamic response negligible with respect to NVH
(Noise Vibration Harshness) analysis. However, when two or more gears are meshing, they excite each other and
the surrounding structure with a frequency that depends on the time variation of the meshing conditions. This
phenomenon usually happens at a substantially lower frequency within the audible range. The vibrational behavior
of a geared transmission mostly depends on three characteristics: mass distribution, stiffness and damping.

In most of the cases, gears work in lubricated conditions, mainly to reduce friction and wear, provide cooling
and remove debris and additionally provide damping and attenuate noise and vibrations. Indeed, for lubricated
curved surfaces in relative motion with respect to each other, the lubricant is dragged by shear in the convergent
gap, separating as such both surfaces due to increased hydrodynamic pressure. Because of the non-conformity of
the contact between gears, the local pressure may rise up to the order of 1−5 GPa, resulting into a significant elastic
deformation of the opposing surfaces. Moreover, at such high pressures, the liquid lubricant becomes compressible
and its viscosity rises locally (i.e. piezo-viscosity), resulting in a local solidification of the lubricant. Hence, this
type of lubrication regime is denoted as elasto-hydrodynamic lubrication (EHL).

As pointed out by Andersson [1], when contacting gear teeth are loaded, the linear part of the displacement
can be separated from the non-linear contact displacement. In this research, the linear load-deflection part is de-
termined by an FE-based approach [2, 3, 4] which is capable of capturing phenomena such as the deformation of
the gear body (fundamental in e.g. lightweight gears) and the global deformation of the teeth (e.g. tooth bending)
assuming quasi-static loading conditions. The non-linear contact damping and stiffness are considered and deter-
mining them is the scope of the presented research. In general, EHL contacts represent a complex multiphysics
problem, due to the two-way coupled interaction of the fluid film and the solid deformation. EHL contacts are



typically studied with either Reynolds equation in combination with Hertzian contact theory [5], or more recently,
by advanced Computational Fluid Dynamics (CFD) and Fluid-Structure-Interaction [6] software. Both turn out
to be prohibitively expensive to be employed in a multibody simulation environment. Therefore, throughout the
last decade, the multibody community started developing analytical or semi-analytical models to describe the most
significant phenomena occurring in this type of contacts [5, 7].

This work aims at combining and analyzing one model involving different aspects in order to accurately de-
scribe the dynamic behavior of the contact, together with the aforementioned FE-based approach for the gears bulk
compliance. The input for the contact model is the non-linear contact penetration δ = −φEHL, which is defined
as the distance between the undeformed surfaces of the two bodies along a common normal direction (with the
negative sign if the body volumes do not penetrate each other). As described in [8], the penetration can be written
as:

δ =−φEHL = δWB −hc, (1)

where δWB is the deformation of the solids and hc is the central fluid film thickness. Due to the similarity between
the pressure distribution in EHL contacts and in Hertzian ones [9], we assume that δWB is approximated by the
formulation developed by Weber and Banascheck [10] for dry contacts, while hc is determined by the model
proposed by Moes [11] for steady-state conditions assuming low frequency dynamics. The normal damping of
the lubricant is accounted for by the formula proposed by Wiegert et al. [12], while the damping of the solids is
neglected since its normal damping is orders of magnitude smaller than the viscous damping of the lubricant. The
contact problem is then written as a set of two equations where the normal contact force and the central fluid film
thickness are the unknowns. The solution can be computed by any Newton-like method for which a semi-analytic
formulation of the Jacobian matrix is given.

Finally, the simulation results employing the contact model together with the gear body linear compliance are
presented by means of the dynamic transmission error (DTE) and the time dependent damping coefficient curves
during the gears meshing for different operating conditions. The results carried out by the simulations are then
compared against experimental test data acquired on a power-recirculation test-rig assessing the accuracy of the
modeling technique [13]. The DTE error curves are compared both in terms of shape as well as in terms of their
spectrum.

2 Gear meshing modeling

The modeling technique proposed in this work aims at the simulation of an entire transmission, focusing on the
development of a strategy for system-level analysis. For this reason this paper adopts a general-purpose multi-
body (MB) formulation which allows for a good model accuracy and complexity while allowing for a reasonable
computation time. This research work focuses on the description of the stiffness and the damping characteristics
of a gear pair while the solution of the MB system is computed using the Siemens multibody solver ”Motion”
available in Virtual.Lab and Simcenter 3D.

When two gears are engaging, the meshing conditions vary during the meshing cycle: in particular the number
of teeth pairs in contact, as well as the meshing conditions such as local relative motion of the contacting surfaces,
their local curvature and the transmitted load are subject to variations. By exploiting the intrinsic geometric prop-
erties of involute gear flanks it is possible to efficiently account for microgeometry modifications, and translational
and rotational misalignment. The contact stiffness is non-linear with respect to the load due to the effects of the lu-
bricant and solids in the contact area and increases with the load. Following Andersson and Vedmar [14], the tooth
pair compliance is divided in two type of contributions: a local compliance describing the deformation close to the
contact area and a bulk compliance describing the contribution due to the deformation far away from the contact
region. Figure 1 shows the stiffness decomposition. The meshing of two gears can, in general, be modeled as a
variable spring-damper in parallel. This spring-damper (upper Figure 1) can be split in three serial contributions:
two linear springs modeling the bulk compliance of the gears and a nonlinear spring-damper to model the full EHL
contact, including the lubricant film and local Hertzian deformation of the surfaces. In this case, the damping of
the gears body is considered negligible with respect to the viscous damping of the contact.
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Fig. 1: Tooth pair stiffness and damping decomposition.

Figure 2 shows graphically, the physical meaning of penetration in a tooth pair. The external load in on the
meshing gears, is transferred by the lubricant film in between the contacting teeth, and the corresponding pressure-
build up is responsible for the local flattening of the surfaces and the bending of the teeth, avoiding as such an
unphysical penetration of both gears. The architecture of the MB solver is such that the spatial position and
velocity of the two gears is given as input and the corresponding contact force is computed as output. The given
penetration is overcome by the local and global deformation of the gears and depends on the stiffness and damping
distribution.

Fig. 2: Penetration in a tooth pair (magnified for visualization).

3 The transient EHL model

As the gears are meshing, the contact conditions, in terms of local geometry, speed, and force, vary over time.
This variation causes the fluid film thickness to change continuosly. In this research work, the transient behavior
of the lubricated contact is described following the approach of Wiegert et al. [12] who applies a Kelvin-Voigt
model in which the spring represents the quasi-static contact stiffness and the damper (placed in parallel) the time-
dependent viscous squeeze damping. In order to account for eventual misalignment between the teeth profile or
lead modifications, each tooth is divided in a predefined number of slices. Due to symmetries in the assumptions
of the contact model, the force has to be applied in the slice center. The latter is chosen on the contact line
in correspondence of the mean plane of the slice perpendicular to the contact line. The contact model assumes
infinite contact length, neglecting side leakage and boundary effects, which remains compatible with the slicing
technique because the slice length is much larger than the characteristic size of the contact.

3.1 Lubricated film thickness in EHL

The steady-state behavior of the EHL contact is in general influenced by the operating conditions, by the properties
of the oil and of the solid material and by the local contact geometry. In general, the central fluid film thickness
hc is obtained from equilibrium between the fluid pressure force and the normal load FSS and it is a function of the
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parameters representing the above-mentioned characteristics, hence:

hc = f (FSS,Req,η0,αBarus,us,Eeq), (2)

where Req represent the reduced radius of curvature of the surfaces, η0 is the dynamic viscosity of the lubricant,
αBarus is the piezo-viscosity coefficient used in Barus [15] formula, us is the sum of the speed of the surfaces along
the direction perpendicular to the contact direction and Eeq represents the reduced Young Modulus. Req and Eeq

are calculated as follows:

Req =

(
1

R1
+

1
R2

)−1

, (3)

Eeq = 2
(

1−ν2
1

E1
+

1−ν2
2

E2

)−1

, (4)

where R1, R2 are the local radii of curvature of the surfaces in contact, E1 and E2 are their Young modulus, ν1 and
ν2 their Poisson ratios.

Based on the Reynolds equation, Moes [11] made an accurate function fit to predict the central film thickness
for a line contact:

hc =

[(
H7/3

RI +H7/3
EI

)3/7 s
+
(

H−7/2
RP +H−7/2

EP

)−2/7 s
]s−1

U−1/2 Req = f (FSS), (5)

where U = η0 us/(Req Eeq) is the dimensionless velocity parameter and s is an auxiliary variable defined as:

s =
1
5
(7+8 exp(−2 HEI/HRI)) , (6)

in which the four basic asymptotes relevant in EHL are shown in Eq. 7 and they are described as function of the
dimensionless lubricant (L) and load (M) parameter. As described in [11], the load parameter M is a function of the
load exerting on the slice FSS, η0, us, Req, Eeq and the slice width b, while the lubricant parameter L is a function
of the Barus [15] parameter αBarus, Eeq, Req, η0 and us.

HRI = 3M−1, HEI = 2.621M−1/5, HRP = 1.287L2/3, HEP = 1.311M−1/8L3/4. (7)

In the latter equations the subscripts refer to regimes, respectively RI as rigid-isoviscous, RP as rigid-piezoviscous,
EI elastic-isoviscous and EP as elastic-piezoviscous. They represent the asymptotes relevant in EHL where the
solids can be either rigid or compliant (respectively Rigid or Elastic) and the lubricant can be considered as isovis-
cous or piezoviscous.

3.2 Lubricant film damping

In EHL contacts, there are two separate damping contributions: one is caused by the viscous forces in the lubricant
being squeezed between the surfaces, the other is related to the capacity of the solid material to dissipate energy.
Without losing significant accuracy of the model, the damping of the solid material can be considered as negligible
with respect to the viscous damping of the lubricant. This assumption is justified in case of steel gears but it might
introduce significant errors for visco-plastic materials (e.g. plastic gears).

The damping force FD is defined as a function of the derivative with respect to time of the fluid film thickness
ḣc. This means that every contact parameter influencing the central fluid film thickness hc influence the damping
force as well. Few models exist in literature to model the contact damping without involving iterative schemes
and discretization of the contact area. Here we opt to implement the model proposed by Wiegert et al. [12] which
defines the damping force as [12]:

FD =−6.66

h3/2
c

R3/2
eq η0 b ḣc, (8)

where b represent the contact length. This simple description of the contact damping force is achieved by assuming
an isoviscous lubricant, instead of a piezo-viscous lubricant, and neglecting the surfaces deformation. The range
of accuracy of the above mentioned assumptions have been investigated in [12] and the results are assumed to be
sufficient for a system-level approach as the one targeted by this research.
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3.3 Surface local deformation

Due to the similarity in pressure distribution in case of EHL contacts and dry contacts, the deformation of the solid
surfaces under the pressure transmitted by the lubricant can be approximated using any Hertz-based formulation.
This work uses the formula developed by Weber and Banaschek [10] which allows for considering a finite depth
of the material and gives the possibility to be consistent when combing bulk and local compliances. The formula
reads [10]:

δWB =
2FSS

πEeqb
log

(
πh2

tot
)
−
[(

(1−ν1)ν1

E1
+

(1−ν2)ν2

E2

)
FSS

πb

]
− 2FSS

πEeqb
log

(
2FSSReq

Eeqb

)
, (9)

where δWB represents the deformation of the solid bodies due to the applied load FSS and htot = h1 +h2 is the total
integration depth.

3.4 Local EHL compliance modeling

Figure 3 shows an EHL contact where the contact of two cylinders is modeled using the reduced radius of curvature
and the reduced Young’s modulus. The position between the undeformed surfaces can be defined by the parameter
φEHL representing the gap which is the negative of the penetration. When the load is applied, the surfaces deform
increasing the gap by a quantity δWB to the central fluid film thickness value hc.

Fig. 3: Elastohydrodynamic contact [12].

There is an equilibrium between the force exerting on the contact F and the steady-state and the damping
contribution of the contact:

F = FSS +FD, (10)

while according to Figure 3 the fluid film is decomposed as the film thickness of rigid surface and the solid
deformation depth:

hc −δWB −φEHL = 0, (11)

Eq. 11 is necessary to relate the gap φEHL with the fluid film thickness. In Eq. 11, φEHL is known a priori and Eq. 5
approximates hc. The pressure distribution p in the EHL contact is known to be similar to the Hertzian pressure
distribution for an equivalent load. Hence, δWB can be estimated using any Hertz-based load-deflection formula.
As above-mentioned, this work uses the formula developed by Weber and Banaschek [10]. Combining Eq. 11 and
Eq. 10:

g(F,hc) = hc −δWB = f ([F −FD(hc)])−q([F −FD(hc)]) = φEHL, (12)

where FD = g(hc, ḣc) according to Eq. 8, ḣc is approximated by finite differences and q(F −FD(hc)) represents
Weber-Banaschek formula provided in Section 3.3. The local compliance problem with F and hc representing the
unknowns can be written as follows:

b(F,hc) =

[
g(F,hc)

f (F,hc)−hc

]
=

[
φEHL

0

]
. (13)
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4 The bulk compliance of the gears

The bulk compliance of the gears accounts for the tooth bending and shear as well as complex phenomena due
to the gear body geometry and coupling between different teeth (e.g. tooth bending due to the bending of the
adjacent tooth). The bulk compliance includes global effects that even if they are known to be linear with respect
to the applied loads, are generally not representable analytically by any closed-form. In fact the design space
for gear bodies and teeth shapes is too wide to be properly captured by a parametric analytical formula. Instead,
these types of effects are typically well captured by gears modelled with the finite element (FE) method. To
this end an FE model of each gear involved in the contact is created by a semi-automatic procedure [16]. Once
the mesh is available, a numerical strategy is adopted to decouple the part of the deformation captured by the
underlying FE model and the part captured by the non-linear analytical formulas. This decomposition must be
peformed accurately in order to make sure that the local effects are removed and they are not influencing the global
compliance. A model order reduction technique is applied in this work, and we refer to [1, 3] for further details.
This approach is schematically represented in Figure 4 where the first two images on the right-hand-side represent
FE-based calculations while the rightmost image represents the analytical non-linear contact deformation. The FE
simulations generate a compliance matrix for each gear. This methodology allows the user to apply this approach
to a wide range of cases.

Fig. 4: Computational steps to represent gear total deformation [4].

A special attention is given to the amount and types of coupling terms to be included in the problem solution.
With coupling terms we indicate the following effects:

• Slice couplings: When a single axial slice is loaded on a tooth flank, the other slices on the same tooth flank
will experience a deformation, effectively contributing to the compliance matrix of the tooth. These terms
are always included in the computations.

• Teeth coupling effects: When a single axial slice is loaded on a tooth flank, slices belonging to all the
adjacent teeth will experience a deformation effectively contributing to the compliance matrix of the gear
pair. In common applications, only a limited amount of teeth is in contact at a certain instant in time so that
the amount of teeth coupling terms can be limited, effectively reducing storage and computational time. The
user can chose to increase the complexity and accuracy of the simulation by including or excluding these
effects.

The coupling terms between slices and more importantly between teeth are a truly unique feature of this method
for multibody systems and is an important contribution to the high accuracy of the method. They represent a key
factor when it comes to predict the moment when a tooth pair enters in contact and in the overall meshing stiffness
evaluation.

4.1 Compliance matrix creation

The creation of the gear compliance matrix involves the computation of a reduction space that is used to condense
the information contained in the underlying FE stiffness matrix of the gears. To obtain the reduction space, a
procedure similar to [3] is employed which leverages a series of static FE solutions for each potential node in
contact node. The reduction space contains only the global deformations the gears. For the majority of the cases,
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it is enough to extract deformation patterns for a limited set of FE nodes (e.g. 50-70% of the nodes on the teeth
flanks). The reduction space obtained Ψi is used to reduce the stiffness matrix of the underlying FE model.

Ki
red = Ψ

iT Ki
FEΨ

i, (14)

where Ki
FE is the FE stiffness matrix of gear and Ki

red is the reduced stiffness matrix. The inverse of the reduced
stiffness matrix is used internally in the multibody solver to create the compliance matrix Ci mapped onto the gear
axial slices.

In some circumstances, the amount of vectors to be included in the reduction space can become significant,
leading to a large stiffness matrix Ki

red [17]. This issue is more common with non-axisymmetric gears with a large
number of teeth. On the other hand it is important to notice that due to the rotation of the gears, only a few teeth
are actively involved in the contact at a certain moment in time. For this reason, the assembly of the reduced
stiffness matrix is performed dynamically during the simulation using only the part of the database related to the
part of Ki

red that is involved in the contact at a certain moment in time. This procedure is closely related to the
static modes switching method proposed in [17]. The contact forces are computed in a quasi-static fashion which
keep the numerical procedure smooth and at each time-step the algorithm obtains convergence without spurious
oscillations. The update of the compliance database takes place every time that a new tooth pair enters or exits
contact or when the amount of teeth potentially in contact changes e.g. due to a center distance variation. In this
way an optimally small database is retained and the inverse of the reduced stiffness matrix is updated only when
necessary with clear computational benefits.

5 Architecture of the numerical model

After the contact detection is performed and the bulk compliance matrices are built, within a time step the solver
calls for the contact force between two gears to be computed. At this point the local compliance and the bulk
compliance have to be summarized in a mathematical fashion to calculate the corresponding force exchanged by
the meshing gears. The problem can be arranged as a set of non-linear equations as follows:

C ·
[

F1,2
hc

]
+

[
g(F1,2,hc)
f(F1,2,hc)

]
−
[
δ1,2

0

]
= 0, (15)

where:

• F1,2 is the vector of the unknown contact forces along the normal direction to the involute profile;

• hc is the unknown vector of the fluid film thicknesses for each slice and each tooth pair in contact;

• g(F1,2,hc) and f(F1,2,hc) are non-linear functions representing the local EHL contact model. They are
function of the unknowns;

• δ1,2 is the vector of instantaneous penetrations on each active slice of the teeth that are in contact at a certain
time instant. The penetration vector accounts is corrected for the microgeometry correction of the gear in
the normal direction;

• C is a block diagonal matrix defined as follows:

C =

[
C1 +C2 0

0 −I

]
, (16)

where C1 and C2 are full matrices that include the FE based compliance for gear 1 and gear 2 and −I
represents hc from Eq. 13.
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It can be noticed that due to the full nature of the Ci matrices, the amount of penetration on each slice is highly
dependent on the penetration (and contact forces) acting on all the potentially active slices. In practice the amount
and location of the active slices is not known before the solution of Eq. 15. In fact, some slices can enter or exit the
contact due to the load on any neighboring slice. The system of equations can be solved employing any Newton
based iterative scheme. The following considerations make the suggested approach computationally attractive and
scalable from a user point of view:

• The separation between global and contact compliance allows to adopt a relatively coarse mesh (usually
6-12 elements on the profile and 4-12 elements on the width are enough for cylindrical gears) as compared
to typical contact mechanics FE meshes where the contact areas have to be highly discretized.

• The slicing approach allows the user to select a number of slices in which the instantaneous axial overlap is
divided. A number of slices that is similar in number to the amount of element along the teeth axes is usually
suggested.

• Since contact forces are computed including a non-linear local compliance term, the contact stiffness presents
the typical stiffening behavior with increasing contact loads.

The implementation of a Newton based scheme requires the Jacobian matrix to be computed with respect to
the unknowns hc and F1,2. Since the problem can become rather stiff, the Jacobian should be well approximated
to assure a convergent iterative scheme. The linear part of Eq. 15 contributes to the Jacobian by the matrix C while
for what concerns the local compliance its contribution to the global Jacobian can be computed as follows:

dg(F,hc)

dF
=

∂ f
∂FSS

· ∂FSS

∂F
− ∂q

∂FSS
· ∂FSS

∂F
=

∂ f
∂FSS

− ∂q
∂FSS

, (17)

d f (F,hc)

dF
=

∂ f
∂FSS

· ∂FSS

∂F
=

∂ f
∂FSS

, (18)

dg(F,hc)

dhc
=

∂ f
∂FSS

· ∂FSS

∂hc
− ∂q

∂FSS
· ∂FSS

∂hc
, (19)

d f (F,hc)

dhc
=

∂ f
∂FSS

· ∂FSS

∂hc
. (20)

Using the formula (17)-(20) only three partial derivatives have to be computed. In particular:

• ∂ f
∂FSS

can be computed analytically or numerically;

• ∂q
∂FSS

can be computed analytically;

• ∂FSS
∂hc

can be computed either numerically or analytically.

Once all the contributions of the Jacobian are computed, the Jacobian matrix is defined by summing the necessary
partial contributions and the matrix C.

6 Validation

The procedure presented in this paper is implemented in the Siemens Virtual.Lab Motion solver and then validated
against experimental test data. The goal of the validation is to assess the accuracy of the contact model for system-
level analysis with respect to experimental test data. The experimental campaign was carried out thanks to an
in-house precision gear test-rig [13] jointly developed by Siemens PLM Software, KU Leuven and the University
of Calabria.

Experimental test data and simulations are compared by means of TE (transmission error) [18] representing
a KPI (key performance indicator) largely adopted to evaluate the NVH performances of a geared transmission.
For what concerns the contact modeling validation, by comparing the test data against simulations we can assess
the validity of the proposed model for system-level analysis despite the experimental test data cannot give specific
information regarding the EHL contact behavior.
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6.1 The experimental test set up

The test-rig (see Figure 5) has been designed and manufactured to assess typical gear-related physical quantities
in static and dynamic conditions, under imposed conditions of misalignment and shaft compliances. The setup is
composed of two main parts: the test side and the reaction side. These parts are dynamically separated from each
other by using flexible couplings. Designed in a power-recirculating arrangement, it allows a small electric motor
to spin the shafts. This simplifies the application of smooth speed and constant torque preloads and facilitates the
measurement of rotational and lateral vibrations in the system. The raw data obtained from the experiment is then
post-processed to obtain frequency and order domain results.

Fig. 5: Test-rig three-dimensional representation. 1. Test gears; 2. Reaction gears; 3. Bearings support; 4. Flexible couplings; 5. Flywheel; 6. Clutch flange
for preload.

The gears used in the test campaign were manufactured with tight tolerances and measured tooth by tooth in the
profile and lead directions. Tooth surfaces have been hardened and precision ground to ISO quality 3 (equivalent
to AGMA 15). The gears are designed in such a way that the signal to noise ratio of the TE is emphasized, due to
higher tooth compliance. The test side of the setup is instrumented as Figure 6 shows.

Fig. 6: Test side of the test-rig and its instrumentation.

This validation work was performed using a gear pair configuration involving one solid gear (P2) and one with
axisymmetric lightweight design (SUC) as shown in Figure 7. The lubricant used to perform the test campaign is
Euroil ATF 6700 which has the viscosity reported in Table 1 while the Barus coefficient has been estimated. The
tested gears and the lubricant used on the test-rig have the geometrical specifications listed in Table 1. Each test is
performed at a constant torque and the gears rotating with a constant speed. While only one level of torque is used
(150 Nm), two different rotational speeds are given to the setup, respectively: 750 rpm and 1500 rpm in order to
not excite the resonances of other components with the tooth passing orders. For further investigations see [19].
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(a) SUC gear. (b) FEM of SUC gear.

Fig. 7: Tested gear with lightweight design (SUC).

Parameters Units Gear-set SUC-P2
Gears Driving gear tooth number [−] 57

Driven gear tooth number [−] 57
Helix angle [deg] 0
Pressure angle [deg] 20
Module [mm] 2.6
Face width [mm] 23
Center distance [mm] 150
Micro-modifications [µm] P2: 10 (profile crowning)

Lubricant Nominal viscosity @ 40◦C [Pa s] 0.025
Barus coefficient [15] [Pa−1] 2.5 ·10−8

Tab. 1: Gear SUC-P2 and oil specifications.

6.2 The multibody model

An MB model of the test-rig was built in Siemens Virtual.Lab Motion as Figure 8 shows. The MB model of the
test-rig has the following features:

1. SUC-P2 gear pair;

2. Bushing elements with 5-by-5 stiffness and damping matrices representing the self-aligning double-row
cylindrical roller bearings;

3. Bushing elements representing the flexible couplings connecting the test side with the flywheels;

4. Relative position bracket joint to introduce the preload in the system.

The gear response is calculated by the above-described methodology, accounting for the compliance of the gears
body and the effects of the lubricant in the contact area. A torque and a rotational damping is given to simulate
the motor input. Once the shafts are rotating at the target speed, the torque due to the damping balances the input
torque and the system keeps rotating at the target speed while allowing for small fluctuations of the rotational
speed. The MB simulations are run using the simulation parameters in Table 2. The number of slices was chosen
in order to have a fast computation while maintaining a good level of accuracy. The friction coefficient cannot be
estimated using the proposed modeling technique.
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Fig. 8: The MB model of the test-rig.

Parameters Units Value
Test Gears Number of slices [−] 3

Bulk compliance [−] FE Preprocessor
Reaction Gears Number of slices [−] 2

Bulk compliance [−] FE Preprocessor
Bearings Radial stiffness [N/m] 3 ·108

Axial stiffness [N/m] 3.68 ·107

Conical stiffness [Nm/rad] 1
Radial damping [kg/s] 5
Axial damping [kg/s] 5
Conical damping [kgm2/(s rad)] 1

Couplings Torsional stiffness [N m/rad] 5740
Torsional damping [kgm2/(s rad)] 5

Actuation Torque [N m] 500
Damping (750 rpm) [Nm/rpm] 0.667
Damping (1500 rpm) [Nm/rpm] 0.334

Simulation Simulation Time [s] 1.3
Time Step [s] 10−5

Tab. 2: Simulation parameters.

6.3 Comparison between simulations and experimental test data

The comparison between simulation and experimental test data is done by means of TE curves in angle domain
(Figure 9) and the spectrum in order domain (Figure 10). The orders related to the tooth passing frequency (57th,
114th, 171st etc.) are easily recognizable and their positions in the spectrum do not depend on the speed of the
shaft. The TE raw data are filtered in order to remove the low frequency oscillations caused by the geometrical
imperfections of the system (e.g. shafts straightness tolerance). These phenomena usually have a frequency below
the 30th −40th order so they can be easily removed without compromising the global accuracy of the signal.

Figure 9 shows a comparison between the TE acquired on the test-rig and the TE simulated using the model
proposed in this paper. As mentioned earlier in this paper, two cases are studied, respectively 750 rpm with 150 Nm
preload in Figure 9a and 1500 rpm with 150 Nm preload in Figure 9b. From Figure 9 is clear how the global shape
of the TE is correctly foreseen. Preliminary tests using more accurate Flexible MB model of the test rig (future
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(a) TE in angle domain at 750 rpm and 150 Nm.

(b) TE in angle domain at 1500 rpm and 150 Nm.

Fig. 9: Comparison between experimental test data and simulation data in terms of TE.

work), have shown that the discrepancy between the curves is caused by the limitations of the current rigid MB
model.

In order to quantify the accuracy of the numerical model with respect to the experimental test data, the spectra
in order domain of the TE for both cases are compared in Figure 10. As spectrum the Power Spectral Den-
sity (PSD) [20] is employed in order to normalize the signal w.r.t the data acquisition parameter.

Figure 10 shows how the dominant orders are well approximated by the model, while less relevant orders have
less accuracy. Dominant orders are the ones that contributes the most in the TE (i.e. 57th, 114th and 228th for
750 rpm and 57th, 114th for 1500 rpm). The lowe accuracy of less relevant orders can be addressed to the rigid
model of the test-rig where no flexibility of the bodies (except for the gears) is accounted for. As described in [19]
most of the mode shapes of the test-rig involve the flexibility of the shafts which cannot be represented by this
model. Moreover when comparing the orders, in case of experimental test data the orders that are not related to the
tooth passing frequency are higher with respect to the simulation data. This is due to the noises of the signal when
acquiring experimental data of a physical system.
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(a) TE spectrum at 750 rpm and 150 Nm.

(b) TE spectrum at 1500 rpm and 150 Nm.

Fig. 10: Comparison between experimental test data and simulation data in terms of TE spectrum.

6.4 The contact damping coefficient

In this section, the damping coefficient of the contact is showed and analyzed by means of its mean value and its
variance throughout the meshing cycle. According to Eq. 8 the damping coefficient is defined as:

CD =−6.66

h3/2
c

R3/2
eq η0 b. (21)

During a meshing cycle the contact conditions (e.g. relative speed of the surfaces, radii of curvature etc.) vary,
causing the damping coefficient to change as well. Table 3 lists the mean damping values Dm for each case study.
The damping coefficient is calculated summing the contribution in damping of all the slices and flanks in contact. It
is clear how the rotational speed of the gears has an important influence on the damping coefficient. This is due to
the influence the surfaces speed has on the fluid film thickness. In particular, when the the sum of the speed of the
surfaces increases, maintaining the same load, hc increases, hence according with Eq. 21 the damping coefficient
decreases.
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750 rpm 1500 rpm
Dm [Ns/m] -124.3 -78.4

Tab. 3: Mean value of the damping coefficient of the contact.

Figure 11 instead shows the damping coefficient over the rotation angle of the gears. Two oscillations with
different amplitude can be recognized:

• Modulation with high amplitude: it is caused by the change in number of teeth pair in contact and it gives
the main contribution to the peak-to-peak value of the curve;

• Modulation with lower amplitude: it is caused by different contact conditions such as surfaces speed, radii
of curvature etc. it is more evident where the damping coefficient is at its minimum absolute value. It is
characterized by lower amplitude since the change in contact conditions is less relevant than the change in
number of tooth pairs in contact.

(a) Damping coefficient at 750 rpm and 150 Nm

(b) Damping coefficient at 1500 rpm and 150 Nm

Fig. 11: Contact damping coefficient over angle.

By Table 3 it is clear how a constant damping coefficient would not be suitable for a simulation in which the
rotational speed of the gears vary. While Figure 11 underlines the importance of having a model for the damping
in order to correctly estimate the fluctuation of the damping coefficient during the meshing cycle.
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6.5 Comparison against the dry contact model

To understand the advantages of the contact model proposed in this paper is interesting to compare the results
obtained with the EHL model against the Hertz-based contact model [16] both using the FE Preprocessor to model
the bulk compliance. This comparison is shown in order to underline the relevance of the added complexity to
have more accurate simulation with respect to the already established Herz-based contact model. The dry contact
model employs the formula of Weber and Banascheck [10]. In order to apply such a model, the user must input a
damping value for the contact since the model is not capable of estimating it. Guessing a damping coefficient can
be relatively straight forward in case of quasi-static simulations (low rpm regime) while it can turn out to be more
complicated with a transient system due to sensitivity of the system response with the contact damping. When dry
contact is considered, the damping coefficient remains constant throughout the meshing cycle.

In order to be consistent, the damping coefficient for the dry model is considered equal to the mean value of the
one calculated with the EHL model ( see Table 3). Moreover, the simulations with the EHL and dry contact model
uses the same parameters listed in Table 2. Figure 12 shows the simulations results including the experimental test
data for both 1500 rpm and 750 rpm.

(a) TE in angle domain at 750 rpm and 150 Nm

(b) TE in angle domain at 1500 rpm and 150 Nm

Fig. 12: TE comparison between EHL and dry contact model and experimental test data.
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From Figure 12 is clear how the EHL model is capable of fitting the experimental test data better than the dry
contact model. This can be addresses to two main factors:

• As pointed out by Figure 11, the damping coefficient is not constant and its value can span in a wide range
during a meshing cycle. By considering a constant damping coefficient the damping force is overestimated
or underestimated depending on the contact conditions which have a negative impact on the accuracy of the
simulation.

• Due to the fluid film thickness, the gears are, in general, in a different configuration with respect to when
using the dry contact model. This can lead to a different results when performing the contact detection
(e.g. a teeth pair can have a delayed engaging moment if the adjacent teeth pair is considered as working in
lubricated conditions).

Of course the level of accuracy gained with the analytical EHL contact model is payed back with a time required
for the simulation to compute that is 1.5−2 times greater than when using the dry contact model.

7 Conclusions and future developments

The preliminary results showed in this work demonstrate that the model is a significant improvement to current
Hertz-based models for system-level MB analysis of mechanical transmissions, and proved its importance espe-
cially in cases where the rotational speed of the gears spans over a wide range which lead to a damping coefficient
that can vary by orders of magnitude. The validation showed in this paper will be further extended with more de-
tailed analysis. Two different paths are currently in development: in line with the validation showed in this paper
the MB model will be improved to introduce the test shafts flexibility by means of flexible MB modeling in order
to correctly simulate more operative conditions, in addition to this, a parallel validation work is currently ongoing
to evaluate the accuracy of the contact model itself, in particular a FSI (Fluid Structure Interaction) model is on
development using the commercial software Star-CCM+ from Siemens CD Adapco in order to have a reference to
quantify the level of accuracy of the contact model in different contact conditions.
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