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ABSTRACT — This paper deals with the numerical modelling of journal bearings. They are mainly used
for supporting rotating systems and powertrains. The bearing joint can be mathematically represented
by a non-linear hydrodynamic force or linearised coefficients of stiffness and damping. The pressure
distribution in a thin viscous oil film is described by the Reynolds equation, which can be solved in
a basic form only by numerical methods. This paper aims at solving and applying the finite difference
method. Moreover, problems and characteristic properties of the chosen method are described in detail.

1 Introduction

Thin viscous fluid films, which carry load due to the effect of aero- or hydrodynamic lubrication, represent an im-
portant family of non-linear couplings in multi-body systems. These films can be found in radial and thrust hydro-
dynamic bearings, between pistons and liners, in linear and radial aerodynamic bearings and in lubricated contacts.
Thus, the accurate evaluation of forces that arise in the viscous films is essential for the computation of dynamics
of multi-body systems including powertrains and rotating systems.

The forces in the viscous films can be evaluated as an integral of the pressure distribution of the film over
a lubricated surface. The distribution is governed by the Reynolds equation, a partial differential equation, which
can be derived from the Navier-Stokes equations [1]. The Reynolds equation can be solved analytically only in
special cases [2] and generally has to be solved numerically. Currently, finite element (FEM) [3, 4], finite volumes
(FVM) [5] and finite difference (FDM) [1] methods are the most prominent numerical methods for solving this
equation.

In order to reduce CPU times, the aero- and hydrodynamic forces are often represented by direct and cross-
coupled stiffness and damping coefficients, which can be linear [6] or non-linear [7]. The linear coefficients are
common especially in industrial practice – for example almost all manufacturers of journal bearings provide data-
sheets with not only design parameters but also with the stiffness and the damping coefficients at several speeds.
A customer is then able to perform a dynamic analysis of a rotor supported in the proposed bearings. Some
recent articles [8, 9] suggest that numerically obtained functions which describe dependence of the coefficients
on journal’s speed may not be continuous, although the same functions obtained analytically are continuous and
smooth [2].

Discontinuities of the above-mentioned numerically obtained functions are studied in this article in the case
of a generic journal bearing, its root cause is identified and possible ways of mitigating its impact on results are
discussed. The paper is outlined as follows: the Reynolds equation, evaluation of the hydrodynamic forces and
dynamic coefficients are introduced in Section 2, numerical analysis of the above-mentioned discontinuities is
discussed in Section 3, and finally Section 4 draws some conclusions and recommendations.

2 Evaluation of hydrodynamic forces

A generic journal bearing shown in Fig. 1a, which consists of a rigid journal and a rigid shell separated with a thin
viscous film, is studied in this paper. Distribution of hydrodynamic pressure p = p(s, x, t) in the film is governed
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Fig. 1: a) A scheme of a generic journal bearing and b) a mesh for the finite difference method

by the Reynolds equation in the form [1]
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where s and x are the circumferential and axial coordinates, respectively, h = h(s, t) is a gap between the journal
and the shell, µ is the dynamic viscosity of the film, r is the radius of the bearing and ω0 is the constant angular
speed of the journal. In the case that both the journal and the shell are circular, h is given as

h = cr− e cos
( s

r
−φ

)
, (2)

where cr is the radial clearance and e= e(t), φ = φ(t) are the eccentricity and the angle to eccentricity, respectively.
Both e and φ are depicted in Fig. 1a.

In order to be solvable by means of the FDM, Eq. (1) has to be reformulated. Firstly, the product rule has to
be applied to partial derivatives on its left side. Equation (1) then comes into the form
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Next, the bearing shell has to be covered by a mesh. Usually, a structured regular mesh with ∆x step in axial and
∆s step in circumferential direction, which is shown in Fig. 1b, is used. The partial derivatives of hydrodynamic
pressure p in Eq. (3) can be replaced by finite differences employing the central difference formula, whereas partial
derivatives of bearing gap h can be computed analytically. The partial derivatives of p are of the form
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where pi, j is the pressure in the inner node with (si, x j) coordinates. After substituting of Eqs. (4) – (7) into Eq. (1),
we obtain

ai, j pi+1, j +bi, j pi−1, j + ci, j pi, j +di, j pi, j+1 + ei, j pi, j−1 = fi, j, (8)
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where ai, j, bi, j, ci, j, di, j, ei, j, fi, j are coefficients of the linear combination. Eq. (8) has to be arranged for each
inner node of the mesh. The resulting system of equations can be written in the matrix form

Ap = f, (9)

where p is the vector of unknown nodal pressure distribution in the inner nodes, f is the vector with the terms on
the right side of the Reynolds equation (1). Vector f also includes terms from Eq. (8) which respect the boundary
conditions [1]. Coefficient matrix A is sparse, symmetric and positive definite.

The components of hydrodynamic forces can be evaluated by direct integration of pressure distribution as
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Because Eq. (9) yields the vector of nodal pressures, integrals from Eq. (10) can be expressed in the form of
finite sums
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Hydrodynamic forces Fhd,y and Fhd,z are obviously non-linear. However, if the journal performs small motions
around its equilibrium position, the hydrodynamic forces can be linearised and represented by the above-mentioned
dynamic coefficients. The forces are then given by the following relation [2][
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Coefficients of stiffness ki j and damping bi j from Eq. (12) are generally derived from the Taylor series of the
hydrodynamic force at the equilibrium position [2]. Appropriate partial derivatives can be rewritten in the form of
finite differences

ki j =−
∆Fhd,i

δ j
, bi j =−

∆Fhd,i

δ̇ j
, (13)

where subscripts i, j indicate the vertical and the horizontal directions y and z, respectively, δ j is a small dis-
placement from the equilibrium position, δ̇ j is a velocity of the squeeze effect and ∆Fhd,i is the difference of the
component of hydrodynamic force at the equilibrium position and under new conditions. The exact specification
of how to evaluate the dynamic coefficients is presented in Fig. 2.

3 Numerical analysis of hydrodynamic forces

The finite difference method introduced in the previous section has certain limitations, which are apparent e.g. in
[8, 9]. These limitations are introduced and described in this section. Firstly, parameters of the analysed model are
summarised and then results are shown and discussed in detail.

3.1 Model and simulation parameters

Parameters of the analysed model are presented in Tab. 1. Note that two variables were independently changed
during the course of the analysis — journal speed n was varied with step ∆n = 10 rpm and the number of nodes in
circumferential direction M was varied with step ∆M = 10. Calculations presented in Fig. 2 are performed for all
possible combinations of n and M.

Parameter pa from Tab. 1 specifies hydrodynamic pressure at the edges of the bearing and parameter pc is used
in the model of cavitation which is implemented as follows: if hydrodynamic pressure p in any node of the mesh
drops below the predefined value pc, then p = pc is set in that particular node.
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calculation of hydrodynamic force

Fload + Fhd = 0

calculation of pressure distribution

input data and initial conditions

equilibrium position

+

a)
calculation of hydrodynamic force

calculation of pressure distribution

input data and equilibrium position

k: small static displacement from eq. position

b: small velocity of squeeze effect at eq. position

calculation of new hydrodynamic forces
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calculation of stiffness and damping coefficient

differences between forces at eq. and new position
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Fig. 2: a) A flow chart of the algorithm for the calculation of the equilibrium position and b) a flow chart of the algorithm for the calculation of stiffness and
damping coefficients

bearing radius r (mm) 49.37
bearing length l (mm) 49.37
radial clearance cr (mm) 0.9
journal speed n (rpm) 1000–5000
bearing load Fload (N) 98
oil viscosity µ (Pa·s) 0.07
ambient pressure pa (bar) 0
saturation pressure pc (bar) 0
number of nodes in axial direction N (-) 21
number of nodes in circumferential direction M (-) 30–170

Tab. 1: Parameters of the analysed model are partially based on [10]
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3.2 Results

Let us introduce a new dimensionless quantity called relative eccentricity ε , which is defined as

ε =
e
cr
. (14)

The dependence of relative eccentricity of the equilibrium point on speed n and on the number of nodes in
circumferential direction M is shown in Fig. 3a. Apparently, there are no visible differences between results
obtained with models with low value of M and high value of M apart from the case M = 30. However, further
investigation of ε reveals that ε is not a smooth function. In fact, not even the first derivative with respect to n is
continuous as shown in Fig. 3b.

These small errors of the results are caused by a non-linear character of conditions for the equilibrium, see
Fig. 2a, or by ill-conditioning of these conditions. The observed errors propagates through the algorithm and
cause further errors of the numerically evaluated hydrodynamic forces. Although the discontinuities are negligible
in the case of the components in the Cartesian coordinate system Fhd,y and Fhd,z, they are rather prominent in
the coordinate system with radial and tangential axes (Fig. 3c). Moreover, some parameters are strongly dependent
on the size of the mesh — most notably maximum hydrodynamic pressure pmax and the position of pmax in the
bearing (Fig. 3d).

Fig. 3: Contour plots show a) relative eccentricity of equilibrium point ε , b) difference of relative eccentricity ε with respect to n, c) difference of the radial
component of hydrodynamic force Frad with respect to n, and d) angle to maximum pressure as the functions of speed n and of the number of nodes in
circumferential direction M
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Fig. 4: Coefficients of stiffness plotted against speed n and the number of circumferential nodes M. Note that figures a) and b) have reversed n axis in
comparison with figures c) and d)

The errors in the determination of ε and of the hydrodynamic forces are negligible if these parameters are
evaluated directly. However, if the hydrodynamic forces are linearised, the non-smoothness of ε , Fhd,y and Fhd,z
translates into jump discontinuities of a function which describes the dependence of the dynamic coefficients on
speed n. These jump discontinuities of the stiffness coefficients are depicted in Fig. 4 and similar discontinuities
can also be observed in the case of the damping coefficients. Interestingly, for lower values of M there is a lower
number of jump discontinuities and bigger jumps and vice versa, for higher values of M there is a higher number
of discontinuities and smaller jumps. Note that the discontinuities may not be apparent if the coefficients are
evaluated in a low number of speeds.

4 Conclusions

This work has provided a basic overview of the evaluation of the hydrodynamic forces in journal bearings by means
of the finite difference method. This method can also be used for the evaluation of the forces in hydrodynamic
films between pistons and liners, in linear and radial aerodynamic bearings and in other lubricated contacts.

Furthermore, some limitations of the finite difference method are addressed and discussed — most notably
the non-smoothness of the function which describes the dependence of the equilibrium point on the speed. The
non-smoothness is caused by a non-linear character of conditions for the equilibrium, or by a ill-conditioning of
these conditions.
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The errors due to the non-smoothness cause errors in the hydrodynamic forces. These errors are negligible if
the forces are evaluated directly but if the hydrodynamic forces are linearised, the non-smoothness translates into
jump discontinuities of a function which describes the dependence of dynamic coefficients on speed n.

The obvious precaution against the jump discontinuities is to use as many points in the circumferential direc-
tion of the mesh as possible. Interestingly, this precaution helps only partially, because if more points are used,
more discontinuities are present. An additional precaution is the usage of strict tolerances for the evaluation of
the equilibria conditions.
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