
The 5th Joint International Conference on Multibody System Dynamics

June 24 – 28, 2018, Lisboa, Portugal

Model-based pre-step stabilization method for non-iterative
co-simulation

Simon Genser1 and Martin Benedikt2

1VIRTUAL VEHICLE Research Center, Graz Austria, simon.genser@v2c2.at
2VIRTUAL VEHICLE Research Center, Graz Austria, martin.benedikt@v2c2.at

ABSTRACT— Complex subsystem integration typically renders to very stiff overall system simulations.
Especially in terms of co-simulation handling of such stiff system simulations becomes difficult as re-
stricted submodel information is accessible for the non-iterative higher-level solver — the challenge
is to maximize co-simulation performance based on available information. Linearly-implicit coupling
schemes has proven to fulfill the requirements for a large range of co-simulations by utilizing partial
derivatives corresponding to subsystem states. In contrast, within this contribution a co-simulation al-
gorithm is presented based on formal subsystem transformations and resulting Interface Jacobians ex-
clusively. This approach enables the introduction of the so-called Error Differential Equation and a pre-
step compensation of the introduced co-simulation discretization error in terms of energy-preservation.
The outlined pre-step co-simulation algorithm is examined along a theoretical pendulum co-simulation
example and compared to other approaches, demonstrating a significantly gained performance im-
provement.

1 Introduction

Co-Simulation represents a special simulation discipline, where several subsystems are simulated independently
over co-simulation time increments, so called macro time steps ∆T , and data is exchanged for synchronization pur-
poses at dedicated points in time, so called communication points T . This approach is typically used for holistic
system simulation, in cases where modeling or simulation of the overall system within a single simulation tool is
impossible [1].

In contrast to the classical numerical simulation approach, in case of co-simulation, additional master algorithms,
i.e. higher-level numerical solvers, are necessary to solve the overall system simulation [2]. Due to limited or re-
stricted interfacing and co-simulation capabilities of the involved simulation tools iterative (implicit) co-simulation
approaches are not applicable in general; those are typically used for the dedicated integration of a few (typically
two or three) subsystem simulations. On the other hand, non-iterative co-simulation is common practice with
its drawback of introducing a significant coupling error, i.e. co-simulation discretization error, on higher master
algorithm level. Mitigation of this co-simulation discretization error is restricted due to limited interfacing and
co-simulation capabilities of the involved simulation tools, e.g. no access to subsystem-internal system states or
resetting of subsystem simulation increments. As co-simulation becomes more and more relevant in different in-
dustries, several approaches were recently developed in order to cope with this specific problem.

With respect to these obstacles a system-oriented approach (NEPCE) was presented in the past where modifi-
cations are applied exclusively to the subsystem inputs for compensation of the co-simulation discretization error
over subsequent co-simulation time increment [3]. Recently, [4] proposed an extension to this approach where
additional model information, i.e. output and input partial derivatives referred to as Interface-Jacobians, is addi-
tionally utilized for modification of the relevant subsystem inputs, especially for handling direct-feedthroughs of
individual subsystems. The exchange and utilization of Interface-Jacobian matrices is motivated by the Functional

Mockup Interface standard (FMI 2.0) [5] and are exemplarily used by [6, 7]. This additional subsystem information
enables master algorithms to cope with stability issues related to system simulation critical properties like stiffness
or algebraic loops.

From a more detailed perspective it is common practice to apply non-iterative co-simulation schemes where inputs
and corresponding outputs are exchanged at coupling time instances. Bidirectional dependencies of subsystems
in connection with the time discrete exchange of coupling variables requires a solution to the resulting causality
problem, which is typically solved by polynomial extrapolation of the coupling variables over the interval of the
current co-simulation time increment. These approaches comply with explicit numerical schemes and also inherit
there weaknesses. Particularly the communication overhead introduced in co-simulation motivates to enlarge the
co-simulation time increments which are tightly dependent on the subsystem dynamics and thus, explicit numerical
schemes for handling stiff systems comes into play. Instead of performing iterations over co-simulation time incre-
ments till convergence to the (unique) solution these explicit schemes (e.g. linearly-implicit schemes) are utilizing
subsystem dynamics information. This way, the solution is determined based on holistic dynamical considerations
of the co-simulated system at hand incorporating (dynamical) cross-couplings of subsystems, which enables the
usage of significantly increased co-simulation time increments and leads to an improved stability behavior.

However, these classical approaches neglect the introduced co-simulation discretization error, which becomes
especially important in case of large co-simulation time increments and energy considerations among subsystems.
The problem originates in the kind of utilization of the system information, whereas typically the determined future
quantity of the solution is modified at the end of the current simulation time increment, like a post-step approach.
In contrast to the classical simulation where the system states are computed, in co-simulation exclusively the inputs
to the subsystems are determined at coupling time instances, which may represent in some rare cases the subsys-
tem internal states. In case of non-iterative co-simulation, as proposed by the NEPCE approach [3], the inputs
have to be modified prior to the introduction of the co-simulation discretization error in order to avoid related co-
simulation discretization errors in subsystem-internal states. The basic NEPCE algorithm proposed in [3] do not
utilize subsystem information and thus only depends on past co-simulation discretization errors, which also leads
to somehow delayed effects.

Meaning, currently existing approaches for mitigating the co-simulation discretization error in non-iterative co-
simulation are applied exclusively after the current co-simulation time increment at the coupling time instant, i.e.
post-step, and impact the overall system simulation in a delayed (!) manner. This may lead to stability issues or to
a decreased accuracy of the overall co-simulation. Within this paper this approach is extend for usage of subsystem
model information which enables a modification of the subsystem inputs prior to the co-simulation time increment
as a kind of a novel model-based pre-step co-simulation algorithm.

The remainder is organized as follows: Section 2 introduces the model-based pre-step stabilization algorithm,
containing the necessary subsystem description for the detailed derivation of the algorithm. In Section 3 the im-
proved performance is illustrated by an stiff multibody system example, a pendulum coupled to an oscillator.

2

2 The Model-based Pre-Step Stabilization Algorithm

The main part of this contribution is the derivation of the model-based pre-step stabilization algorithm, which
contains of three main steps:

1. estimation of the exact, monolithic output ỹ utilizing the Error Differential Equation for the last macro time
step;

2. model-based extrapolation ŷ of the exact output ỹ , over the next macro time step, considering cross coupling
effects (model-based);

3. optimize the subsystem inputs u for the next macro time step (pre-step), based on the extrapolation ŷ.

2.1 Subsystem Description

In this section the underlying assumptions and the required subsystem description are stated. For lack of simplicity
the following assumptions are made:

• the macro time step size is fixed for the overall co-simulation (i.e. ∆T k
i = ∆T);

• the input u and output y of every subsystem are scalar signals;

• the overall co-simulation consists of two fully coupled subsystems (i.e. N = 2 and u1 = y2, u2 = y1).

The basis of the subsystem description is the classical state-space representation [8]

ẋi = Ai · xi +Bi ·ui, (1)

yi =Ci · xi (2)

with the assumption that there is no direct-feedthrough in (2). The derivation of the required output-based subsys-
tem description starts with the time derivative of (2)

ẏi =Ci · ẋi.

Inserting (1) and applying the pseudo-inverse1 C−1
i results in

ẏi =Ci ·
(
Ai ·C−1

i · yi +Bi ·ui
)
, (3)

whereas the following subsystem description is motivated:

ẏi = Si(yi,ui). (4)

Linearisation of (4) leads to the required linear subsystem description:

ẏi =
∂Si

∂y
· yi +

∂Si

∂u
·ui. (5)

Note: The linearisation is performed around a equilibrium point of Si and therefore the constant part vanishes.
It should be mentioned that from this motivation transformation rules for the output-based system description (5)
in the classical state-space representation (3) and vice-versa, are a bonus outcome:

∂Si

∂y
=Ci ·Ai ·C−1

i , (6)

∂Si

∂u
=Ci ·Bi. (7)

The utilization of the Functional Mock-up Interface 2.0 (FMI 2.0) [5] allows to access related system matrices, i.e.
the partial derivatives, of a subsystem, therefore the transformation rules above are mandatory for exploiting the
FMI 2.0 potentials.

1The utilization of the pseudo-inverse is due to generalization issues.

3

2.2 Derivation of the Main Steps

This section deals with the derivation of the three main steps of the pre-step algorithm, for schematic illustration
see Figure 1. The derivation is outlined for the case that the current time instant is T k, as denoted in Figure 1.

Fig. 1: Schematic illustration of the model-based pre-step stabilization algorithm, actual time is T k

2.2.1 Step 1: Computing ỹ - Solving the Error Differential Equation

For the approximation of the exact, monolithic solution ỹi, over the last macro time step [T k−1,T k] , the so called
Error Differential Equation is required, illustrated as step 1 in Figure 1. The origin of the derivation is the subsys-
tem description (4) and the cases:
ideal coupling (i.e. u1 = y2 and u2 = y1):

˙̃y1 = S1(ỹ1, ỹ2), (8)
˙̃y2 = S2(ỹ2, ỹ1), (9)

co-simulation coupling:

ẏ1 = S1(y1,u1), (10)

ẏ2 = S2(y2,u2). (11)

Comparing (8) with (10) leads to

ẏ1−S1(y1,u1) = ˙̃y1−S1(ỹ1, ỹ2). (12)

To describe the deviation between the exact, monolithic output ỹi and the output computed by the subsystem yi the
δ -error is introduced as

δi := ỹi− yi, (13)

for illustration see Figure 1. Inserting δi in (12) leads to

S1(ỹ1, ỹ2)−S1(y1,u1) = ˙̃y1− ẏ1︸ ︷︷ ︸
δ̇1

. (14)

The coupling errors εi are defined as

ε1 := y2−u1 ε2 := y1−u2, (15)

whereas these errors arise from the solution of the causality problem of weak coupled problems by extrapolation
of the input quantities. With the definitions of the δ -errors, it is possible to state

4

ỹ1 = δ1 + y1 ỹ2 = δ2 + y2. (16)

Utilizing the ε-errors leads to

y1 = u2 + ε2; u1 = y2− ε1; ỹ1 = u2 + ε2 +δ1. (17)

Inserting (16) and (17) in (14) results in

δ̇1 =S1(u2 + ε2 +δ1,y2 +δ2)−S1(u2 + ε2,y2− ε1). (18)

Evaluating this equation at the time instant T k leads to

δ̇1 =S1(uk
2 + ε2 +δ1,yk

2 +δ2)−S1(uk
2 + ε2,yk

2− ε1), (19)

where the index k is omitted for the δ - and ε-errors. Applying a spatial linearisation, around (uk
2 := u2(T k), yk

2 :=
y2(T k)), on (19) leads to

S1(uk
2,y

k
2)+

∂S1

∂y
· (ε2 +δ1)+

∂S1

∂u
·δ2−S1(uk

2,y
k
2)−

∂S1

∂y
· ε2 +

∂S1

∂u
· ε1 = δ̇1. (20)

After cancelling out terms the final linear ordinary differential equation, the herein defined Error Differential
Equation for S1, renders to:

δ̇1 =
∂S1

∂y
·δ1 +

∂S1

∂u
· [δ2 + ε1]. (21)

Analogously with (9) and (11) the Error Differential Equation for S2 is:

δ̇2 =
∂S2

∂y
·δ2 +

∂S2

∂u
· [δ1 + ε2]. (22)

The coupled structure of the Error Differential Equations for S1 and S2 is clearly visible in the following vector
and matrix notation: (

δ̇1

δ̇2

)
︸ ︷︷ ︸
=:δ̇

=

(
∂S1
∂y

∂S1
∂u

∂S2
∂u

∂S2
∂y

)
︸ ︷︷ ︸

=:Ã

·
(

δ1
δ2

)
︸ ︷︷ ︸
=:δ

+

(
∂S1
∂u 0
0 ∂S2

∂u

)
︸ ︷︷ ︸

=:B̃

·
(

ε1
ε2

)
︸ ︷︷ ︸
=:ε

. (23)

So the global coupled Error Differential Equation is stated as:

δ̇ = Ã ·δ+ B̃ ·ε. (24)

Fig. 2: Schematic illustration of two fully coupled subsystems, introducing the coupling error εi

5

The equation is denoted as global, i.e. it can not be solved by an individual subsystem independent from the others.
The off-diagonal entries of Ã are a crucial key to the improved performance because cross coupling effects between
the individual subsystems are taken into account.
Remark: The initial conditions arises from the fact that y is continuous and therefore δ is continuous as well. This
means that the computation of the exact, monolithic output ỹi is well defined through the differential equation (24),
the initial conditions and definitions of the δ -error in (13), which can be rearranged to

ỹi = δi + yi. (25)

2.2.2 Step 2: Computing ŷ - Model-based Extrapolation

The extrapolation ŷi of the exact, monolithic ỹi output over the next macro time step [T k,T k+1] is a mandatory
step, see step 2 in Figure 1. Due to the exploitation of the partial derivatives of the subsystems, it is possible to
take cross coupling effects between the subsystem in account. This is an essential key to the improved stability
and accuracy of the algorithm, especially therefore it is called model-based stabilization. Comparing this to the
idea of an implicit solver, one can interpret this stabilization algorithm as an implicit, non-iterative co-simulation
approach.
The key idea behind the model-based extrapolation is the assumption that, the coupling over the next macro time
step is ideal, i.e. u1(t) = ŷ2(t) and u2(t) = ŷ1(t) for all t ∈ [T k,T k+1]. Inserting this in

˙̂yi ≈
∂Si

∂y
· ŷi +

∂Si

∂u
·ui for i = 1,2, (26)

leads to:

˙̂y1 ≈
∂S1

∂y
· ŷ1 +

∂S1

∂u
· ŷ2, (27)

˙̂y2 ≈
∂S2

∂y
· ŷ2 +

∂S2

∂u
· ŷ1. (28)

The coupled structure of (27) and (28) is evident in:(˙̂y1
˙̂y2

)
︸ ︷︷ ︸
=: ˙̂y

=

(
∂S1
∂y

∂S1
∂u

∂S2
∂u

∂S2
∂y

)
︸ ︷︷ ︸

=:Â

·
(

ŷ1
ŷ2

)
︸ ︷︷ ︸
=:ŷ

.

The final global differential equation for the model-based extrapolation can be written as:

˙̂y = Â · ŷ. (29)

Due to the fact that ŷi represents the extrapolation of ỹi over the next macro time step, the initial condition for (29)
is:

ŷi(T k) = ỹi(T k), (30)

for the extrapolation over [T k,T k+1]. The value ỹi(T k) is known from the solution of the Error Differential Equation
in the previous step of the algorithm.

2.2.3 Step 3: Computing u - Pre-Step Input Optimization

The pre-step optimization of the input u for the next macro time step [T k,T k+1], denoted as step 3 in Figure 1, is
the third main step of the presented pre-step stabilization method. It is worth to mention that this optimization can
be performed for every subsystem independently, therefore it is called a local computation and hence the sub index

6

i is neglected in this subsection. The key to a proper optimization is to define the right quantity to optimize, here
the so called α-error

α(t) := ŷ(t)− y(t), (31)

is utilized, for illustration see Figure 1. The input optimization is based on the minimization of α over the next
macro time step, i.e.

min
t∈[T k,T k+1]

|α(t)| (32)

is claimed. From a theoretical point of view there are different ways to solve optimization problems like (32).
Herein a discretized solution, based on the macro time step size, is used, which leads to the following equation:

|αk+1| !
= 0, (33)

with αk+1 := α(T k+1). Future work will focus among others on other ways of solving (32), especially on varia-
tional approaches. Inserting the definition of the α-error (31) in (33) leads to

ŷk+1 !
= yk+1, (34)

with ŷk+1 := ŷ(T k+1) and yk+1 := y(T k+1). The connection between the input u and the output y is mandatory for
choosing u in such a way that (34) is fulfilled. To keep the derivation of it as simple as possible piecewise constant
basic functions2 are chosen for the input u, i.e.

u(t) := uk for t ∈ [T k,T k+1]. (35)

From the standard theory of ordinary differential equations [9] the analytical solution of a subsystem is described
via

y(t) = e
∂S
∂y ·t · y0 +

∫ t

tstart

e
∂S
∂y ·(t−τ) · ∂S

∂u
·u(τ) dτ (36)

where y0 denotes the initial condition for y, inserting the approach (35) in (36) results in

y(t) = e
∂S
∂y ·t · y0 +

k

∑
l=0

∫ T l+1

T l
e

∂S
∂y ·(t−τ) · ∂S

∂u
·ul dτ (37)

with T 0 = tstart and ∆T and k are appropriate chosen, so that T k+1 = t holds. The splitting of the integral is due to
the piecewise definition of u in (35). With

φA(t) := e
∂S
∂y ·t ,

φBl (t) :=
∫ T l+1

T l
e

∂S
∂y ·(t−τ) · ∂S

∂u
dτ,

it is possible to rewrite (37) in

y(t) = φA(t) · y0 +
k

∑
l=0

ul ·φBl (t). (38)

2This means that u is discontinuous but although the outputs are continuous signals by assumption this is not a problem due to the lack
of a direct-feedthrough in the subsystems.

7

Evaluation of this equation in T k+1 as it is required in (34), leads to

yk+1 = φA(T k+1) · y0 +
k

∑
l=0

ul ·φBl (T
k+1). (39)

Recursive inserting of this equation, leads to

yk+1 = φA(∆T) · yk +uk ·φBk(T
k+1). (40)

φA(∆T) and φBk(T
k+1) denote matrices with constant coefficients and therefore the time variable and the sub index

k is neglected, this results in

yk+1 = φA · yk +uk ·φB. (41)

In this equation the connection between the input and the output of a subsystem is clearly visible. From inserting
(41) in (34) follows

ŷk+1 = φA · yk +uk ·φB, (42)

algebraic rearranging and utilization of the pseudo-inverse φ
−1
B leads to

uk = φ
−1
B ·

(
ŷk+1−φA · yk

)
. (43)

Due to the fact that yk is known from the previous macro time step and ŷk+1 is computed in the previous step
of the algorithm, see therefore Section 2.2.2, the optimal input uk for the next macro time step [T k,T k+1] can be
determined.
Note: If the number of inputs is higher than the number of outputs per subsystem, extra conditions are needed to
determine the inputs in satisfying manner. Otherwise, if there are more outputs in a subsystem than inputs a least
square solution is preferred, which is automatically ensured by utilizing the pseudo-inverse.

2.3 Workflow

This subsection summarizes the algorithm and explains in detail its workflow. There are five steps which have to
be performed, see therefore the workflow in Figure 3:

1. accessing subsystem partial derivatives;

2. assembling of global matrices;

3. global approximation of the exact solution;

4. global model-based extrapolation;

5. local input optimization.

The assumptions3 from Section 2.1. are extended with:

• the local inputs u1 and u2 are piecewise constant functions (ZOH);

• the macro step size ∆T is equal to the micro step size δT ;

• the explicit Euler is used for numerically solving the ordinary differential equations.

8

Fig. 3: workflow diagram of the model-based pre-step stabilization algorithm

For the following description the actual time is T k and therefore the objective of the algorithm is to compute the
optimized inputs uk

1 and uk
2. The quantities yk

i , . . . ,y
1
i , ỹk−1

i , . . . , ỹ1
i and uk−1

i , . . . ,u1
i for i = 1,2 are available from

the previous computational steps. For illustration of these quantities see Figure 4.
Accessing the subsystem partial derivatives (SID), for S1 and S2 can be performed independently from each other

and is therefore local, i.e.

[
∂Sk

i
∂u

,
∂Sk

i
∂y

] = SID(uk−1
i , . . . ,u1

i ,y
k
i , . . . ,y

1
i) (44)

for i = 1,2. With knowledge of the structure of the co-simulation, i.e. utilizing the coupling matrix4, it is possible
to assemble the global matrices:  ∂Sk

1
∂y

∂Sk
1

∂u
∂Sk

2
∂u

∂Sk
2

∂y


︸ ︷︷ ︸

=Ã

,

(
∂Sk

1
∂u 0

0 ∂Sk
2

∂u

)
︸ ︷︷ ︸

=B̃

,

 ∂Sk
1

∂y
∂Sk

1
∂u

∂Sk
2

∂u
∂Sk

2
∂y


︸ ︷︷ ︸

=Â

. (45)

With Ã and B̃ it is possible to formulate the Error Differential Equation (24):

δ̇ = Ã ·δ+ B̃ ·ε (46)

3These assumptions are necessary to keep the notation simple, the generalization is straightforward.
4The coupling matrix L (L · y = u) is here declared as L =

(
0 1
1 0

)
.

9

Fig. 4: Illustration of the discretized algorithm for subsystem S1, the circled quantities are the ones, which have to be computed at the actual time T k

and approximate the exact, monolithic output ỹ, where δ := (δ1,δ2)
T and ε := (ε1,ε2)

T . The discretizied5 equation,
with explicit Euler schema, results in

δk = δk−1 +∆T ·
(

Ãk ·δk−1 + B̃k ·εk−1
)
, (47)

therefore δk−1 and εk−1 are necessary to solve the equation. From the previous computation step δk−1 is known.
εk−1 is defined in (15) as

ε
k−1
2 = yk−1

1 −uk−1
2 ε

k−1
1 = yk−1

2 −uk−1
1 . (48)

So they are computable at time instant T k, as it is depicted in Figure 4. So δk can be computed, which leads to the
approximated, exact solution

ỹk
i = δ

k
i + yk

i (49)

for i = 1,2. In the next step the global model-based extrapolation of ỹk
i over the next macro time step is performed,

i.e. the computation of ŷk+1
i for i = 1,2. With the global assembled matrix Â and (29) the future progress is

approximated with (˙̂y1
˙̂y2

)
︸ ︷︷ ︸
= ˙̂y

=

 ∂Sk
1

∂y
∂Sk

1
∂u

∂Sk
2

∂u
∂Sk

2
∂y


︸ ︷︷ ︸

=:Âk

·
(

ŷ1
ŷ2

)
︸ ︷︷ ︸
=ŷ

.

The numerical solution5 is computed with the explicit Euler method with

ŷk+1 = ỹk +∆T · Âk · ỹk. (50)

Here it should be denoted that ŷk is replaced by ỹk, as it is denoted in Figure 4 and stated in (30). That is the
reason for the discontinuity of ŷ at every communication point, but this is crucial for the improved stability of the
algorithm, especially in the case of stiff systems.
The last step is to locally optimize the input uk

i for i = 1,2. For piecewise constant functions the optimization is
outperformed with (43)

uk
i = φ

−1
∂Sk

i
∂u

·

(
ŷk+1

i −φ
∂Sk

i
∂y

· yk
i

)
. (51)

5For a better numerical solution an additional step-size for the discretization of the differential equation can be utlized, typical chosen
clearly smaller than the macro-step size.

10

The computation of φ
∂Sk

i \∂u and φ
∂Sk

i \∂y can be done with suited, classical numerical methods, see [8]. The usage
of the pseudo-inverse is preferred due to generalization issues. With uk

i the subsystem Si is possible to simulate
the next macro time step T k+1 and compute yk+1

i . The computation is finished and the next macro time steps starts
with the system identification at the time instant T k+1.
Remark: To improve the computational effort the system identification can be fixed for some macro time steps and
can only be updated every n-th step, see [10]. A second strategy to decrease the effort would be to only update the
subsystem matrices if there is a sufficient big change in the dynamics of the systems.

11

3 Theoretical Stiff Multibody System Example

For demonstration of the improved performance of the herein presented algorithm, a recently analyzed non-linear
multibody system example, a mathematical pendulum coupled to an oscillator, representing a stiff system has been
chosen see [1] and Figure 5.

3.1 Pendulum coupled to an Oscillator

The model-based pre-step stabilization requires subsystems which are described via first order, linear differential
equations. Therefore the following second order, non-linear differential equations have to be transformed in two
first order, linear systems of differential equations. The second order differential equation

Fig. 5: Stiff multibody system example: mathematical pendulum coupled to an oscillator [1]

mpend lα̈ =−mpendgsin(α)+ cos(α)Fc(α, α̇,x1, ẋ1) (52)

describes the mathematical pendulum and

moscẍ1 =−Fc(α, α̇,x1, ẋ1) (53)

describes the oscillator. The coupling between the pendulum and the oscillator is expressed with the force:

Fc = k · (x1− l sin(α))+d · (ẋ1− lα̇ cos(α)) . (54)

The pendulum represents subsystem 1 and the oscillator subsystem 2. So it is necessary to transform (52) into a
first order system, this is done by the substitution x1 = ẋ1, see therefore standard ode-theory [9], which leads to

S1 :

{
α̇ = α,

α̇ = α̈ =−g
l sin(α)+ cos(α)

mpend l Fc(α, α̇,x1, ẋ1).

So it is possible to write the non-linear subsystem S1 as(
α̇

α̇

)
=

(
α

−Fc(α,α̇,x1,ẋ1)
mosc

)
=: S1

([
α

α

]
︸︷︷︸
=:y1

,

[
x1
x1

]
︸︷︷︸
=:u1

)
= S1 (y1,u1) (55)

where y1 denotes the output and u1 the input of S1. The analogue substitution for the subsystem S2 leads to

S2 :

{
ẋ1 = x1,

ẋ1 = ẍ1 =−Fc(α,α̇,x1,ẋ1)
mosc

.

12

Rewriting it in vector notation is resulting in(
ẋ1
ẋ1

)
=

(
x1

−Fc(α,α̇,x1,ẋ1)
mosc

)
=: S2

([
x1
x1

]
︸︷︷︸
=:y2

,

[
α

α

]
︸︷︷︸
=:u2

)
= S2 (y2,u2) (56)

Note: Comparing (56) with (55) immediately leads to the coupling condition u1 = y2 and u2 = y1.
The following linearization of S1 and S2 is mandatory to utilize the model-based pre-step stabilization

ẏ1 = S1 (y1,u1)≈ S1 (y10,u10)+
∂S1

∂y
· (y1−y10)+

∂S1

∂u
· (u1−u10) , (57)

describes the first-order Taylor approximation with their origin in (y10,u10). The center of the series is chosen as
the equilibrium point, i.e. S1 (y10,u10) = 0. Here it holds y10 = (0,0)T and u10 = (0,0)T . This leads to

ẏ1 = S1 (y1,u1)≈
∂S1

∂y
·y1+

∂S1

∂u
·u1. (58)

Analogously the linearisation of S2 is

ẏ2 = S2 (y2,u2)≈
∂S2

∂y
·y2+

∂S2

∂u
·u2. (59)

The analytic computation6 of the partial derivatives ∂S1
∂y and ∂S1

∂u and utilization of the definition of Fc in (54) results
in

∂S1

∂y
=

 0 1
−gcos(α)/l +{cos(α) · [−kl cos(α)+ . . . −dl cos(α)2/(mpend l)

. . .dlα sin(α)]− sin(α)Fc}/(mpend l)

 ,

∂S1

∂u
=

(
0 0

k cos(α)/(mpend l) d cos(α)/(mpend l)

)
.

and the partial derivatives for S2 are stated as

∂S2

∂y
=

(
0 1

−k/mosc −d/mosc

)
,

∂S2

∂u
=

(
0 0

[kl cos(α)−dlα sin(α)]/mosc dl cos(α)/mosc

)
.

For the following computations the parameters are chosen like in [1]

l = 1m, g = 9.81m/s2, mpend = mosc = 1kg, α(0) = 5◦, x1(0) = 0.1m+1m · sin(α(0)), (60)

α̇(0) = 0rad/s, ẋ1(0) = 0m/s, k = 103 N/m, d = 10Ns/m. (61)

Due to this parameters the pendulum-oscillator coupling is a stiff problem, with a stiffness of

ℜ(|λmax|)
ℜ(|λmin|)

=
9.96

0.0002
= 49800. (62)

Here ℜ(·) denotes the real value of a complex number and λmax respectively λmin stands for the maximum respec-
tively the minimum of the eigenvalues of the monolithic coupled problem (65).
For the calculation of the errors a reference solution yire f is needed, therefore the linearized, monolithic system is

6To keep the error due to the linearisation as small as possible the linearisation is updated at every communication point.

13

utilized. The monolithic system results from the assumption that the coupling is ideal, i.e. u1 = y2 and u2 = y1.
From (58) and (59) follows

ẏ1re f =
∂S1

∂y
·y1re f +

∂S1

∂u
·y2re f , (63)

ẏ2re f =
∂S2

∂y
·y2re f +

∂S2

∂u
·y1re f . (64)

This results in the monolithic 4-th order autonomous system(
ẏ1re f
ẏ2re f

)
=

(
∂S1
∂y

∂S1
∂u

∂S2
∂u

∂S2
∂y

)
·
(
y1re f
y2re f

)
. (65)

The numerical computation of the reference solution is performed with the explicit Euler method with macro time
step size is equal to the micro time step size, i.e. ∆T =δT . The utilized error is

err = max
t∈[tstart ,tend]

2

∑
i=1
|y1re f (i)−y1(i)|+ |y2re f (i)−y2(i)|. (66)

Remark: For the numerical solution of the Error Differential Equation a linear-implicit solver [11] with the micro
step size δT is utilized. The model-based extrapolation is solved with the same numerical solver utilizing the
macro step size ∆T , to keep the computational effort low. To improve the stability and accuracy of the pre-step
method more accurate numerical solvers or smaller step sizes can be utilized.

3.2 Performance Evaluation

To illustrate the improved performance of the model-based pre-step stabilization it is compared to the classical
Zero-Order Hold (ZOH) coupling, the Nearly Energy Preserving Coupling Element (NEPCE) method [3] and the
NEPCE combined with an Anti-Aliasing Filter [12]. Figure 6 and 7 shows:

1. the improved stability of the model based pre-step stabilization method for ∆T > 5 ·10−4;

2. for ∆T < 5 ·10−4 all coupling algorithms converge to the same error boundary;

3. the model based pre-step stabilization method reaches this error boundary with ∆T = 6 ·10−3, which is about
20 times higher compared to all other methods.

Due to the error estimation7 [1]

err ≤C0 · (δT p1
1 +δT p2

2 +∆T) (67)

and the fact that the micro-step size δT is fixed, the existence of an asymptotic border of the error is nothing
surprising. The fact that the asymptotic error, i.e. the error for ∆T → 0, is, in at least an approximate sense, for
δT = 5 ·10−5, Figure 7, the half of the error as for δT = 10−4, Figure 6, for all coupling methods is a strong hint
for the validity of the error estimation (67) for decreasing δT . Due to the faster convergence, to the asymptotic
error, of the pre-step stabilization method, the validity of the error estimation is more precise.
For Zero-Order Hold coupling the error border is reached with ∆T = 2 · 10−4. The asymptotic error border is
reached with ∆T = 4 · 10−4 by utilization of the NEPCE coupling. For NEPCE in combination with the Anti-
Aliasing Filter the border is by approximately ∆T = 10−4, but the stability is higher compared to the classical
NEPCE. For the model based pre-step stabilization the asymptotic border is by ∆T = 6 · 10−3. This means that
with the use of the herein invented pre-step stabilization method one can choose the macro step size approximately
15 times higher compared to NEPCE coupling or 30 times compared to ZOH coupling. This increased macro time
step size leads to a decrease in the communication effort in the overall co-simulation. This lead to a wider class of

14

Fig. 6: Logarithmic error plot for varying macro-step size and δT = 10−4; tend = 1s

problems which will be suitable for real time simulations.

Fig. 7: Logarithmic error plot for varying macro-step size and δT = 5 ·10−5; tend = 1s

Figure 8 depicts the angle velocity α̇ of the pendulum, computed with ∆T = 0.005 and δT = 10−4, here the
improved accuracy of the invented pre-step stabilization is obvious. One can also see that the solution with the
NEPCE coupling is instable and comparing this to the logarithmic error plots leads to the conclusion that an error
over approximately 1 implies that the method is unstable. This leads to the conclusion that for this stiff multibody
system example the model-based pre-step stabilization is stable up to an macro step size of ∆T = 0.04.

7The error estimation holds for sufficiently small ∆T and piecewise constant extrapolation of the inputs. Here pi denotes the conver-
gence order of the local numerical solver for the subsystem Si, e.g. pi = 1 for an explicit Euler schema.

15

Fig. 8: The angle velocity α̇ of the pendulum for ∆T = 0.005 and δT = 10−4

In Figure 9 the angle velocity α̇ is depicted with ∆T = 0.06 and δT = 10−4, so it should be unstable compared
to Figure 6. But it doesnt look typical unstable, the first thing that leap to ones eyes are the bumps in the output of
the pre-step stabilization solution. But where is their origin?
If one compares the length of the bumps to the macro-step size one recognizes that they coincide. This phe-
nomenon origins from the discretized choice of the input in (33). The optimization problem (32) is only solved
for the communication steps T k+1 and not for the interval between them. This is the reason for the seemingly
unstable behaviour of the model-based pre-step stabilization for large macro-step sizes. This motivates to solve
the optimization problem (32) in such a way that the interval between two communication points is also taken into
account, e.g. in a variational way i.e.

∫ T k+1

T k |α(t)|dt→ 0, which will be in focus of the future work.

Fig. 9: The angle velocity α̇ of the pendulum for ∆T = 0.06 and δT = 10−4

16

4 Conclusions and Future Work

For efficient handling of stiff systems model-based numerical schemes have to be applied. In contrast to existing
approaches, the proposed algorithm is based on a 1st order approximation of the exact, monolithic solution and, in
addition, performs an optimization-based pre-step correction, resulting in a significant performance improvement
in terms of accuracy and stability. Enlargement of the macro step-size (≈ 20 times) yields overall co-simulation
improvement, especially the communicational effort is reduced.
Future work focusses on identification of sensitivities and analysing the different options to optimize the input. An
additional focus lies on the generalization of the method for the case of subsystem with direct-feedthrough and
industrial applications.

Patent Remark

The presented work describes a novel coupling approach for co-simulation of distributed components. Pro-
tected by a pending European patent [13] the outlined schemes are supported by the co-simulation platform
Model.CONNECT T M [14] from AVL.

Acknowledgements

The publication was written at VIRTUAL VEHICLE Research Center in Graz, Austria. The authors would like to
acknowledge the financial support of the COMET K2 Competence Centers for Excellent Technologies Programme
of the Federal Ministry for Transport, Innovation and Technology (bmvit), the Federal Ministry for Digital, Busi-
ness and Enterprise (bmdw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the
Styrian Business Promotion Agency (SFG).

References
[1] M. Arnold, “Multi-rate time integration for large scale multibody system models,” IUTAM Symposium on Multiscale

Problems in Multibody System Contacts, 2006.

[2] M. Busch, Zur Effizienten Kopplung von Simulationsprogrammen. PhD thesis, University Kassel, 2012.

[3] M. Benedikt and A. Hofer, “Guidelines for the application of a coupling method for non-iterative co-simulation.,” IEEE,
8th Congress on Modelling and Simulation (EUROSIM), Cardiff Wales, 2013.

[4] S. Sadjina, L. Kyllingstad, S. Skjong, and E. Pedersen, “Energy conservation and power bonds in co-simulations: non-
iterative adaptive step size control and error estimation,” arXiv preprint arXiv:1602.06434, 2016.

[5] T. Blochwitz, M. Otter, A. J., A. M., and C. C., “Functional mockup interface 2.0: The standard for tool independent
exchange of simulation models,” 9th International Modelica Conference Munich, 2012.

[6] S. Sicklinger, B. V., and E. B., “Interface-jacobian based co-simulation,” NAFEMS World Congress 2013, 2013.

[7] A. Viel, “Implementing stabilized co-simulation of strongly coupled systems using the functional mock-up interface
2.0,” 10th International Modelica Conference,Lund, Sweden, 2014.

[8] R. C. Dorf and R. H. Bishop, Modern Control Systems. USA: Pearson, 13th ed., 2017.

[9] G. Teschl, Ordinary Differential Equations and Dynamical Systems. Vienna, Austria: American Mathematical Society,
1st ed., 2012.

[10] M. Arnold, “Numerical stabilization of co-simulation techniques, the ODE case,” Martin Luther University Halle-
Wittenberg NWF II-Institute of Mathematics, 2011.

[11] F. Cellier and E. Kofman, Continuous System Simulation. New York: Springer, 1st ed., 2010.

[12] M. Benedikt and E. Drenth, “Relaxing sti system integration by smoothing techniques for non-iterative co-simulation.,”
IUTAM Symposium on Co-Simulation and Solver-Coupling, 2018 (accepted).

17

[13] M. Benedikt and S. Genser, “Pre-step co-simulation method and device,” 2018.

[14] AVL, “Model.connectT M , the neutral model integration and co-simulation platform connecting virtual and real compo-
nents.” http://www.avl.com/-/model-connect-, 2018. [Online; accessed 31.01.2018].

18

http://www.avl.com/-/model-connect-

	Introduction
	The Model-based Pre-Step Stabilization Algorithm
	Subsystem Description
	Derivation of the Main Steps
	Step 1: Computing - Solving the Error Differential Equation
	Step 2: Computing - Model-based Extrapolation
	Step 3: Computing u - Pre-Step Input Optimization

	Workflow

	Theoretical Stiff Multibody System Example
	Pendulum coupled to an Oscillator
	Performance Evaluation

	Conclusions and Future Work

