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Multibody system dynamics is a general approach which can be used to describe equations of motion in a straight-
forward manner and can be utilized for variety applications, such as granular dynamics, mechanical systems con-
sisting of rigid and flexible components. Contacts between rigid and/or flexible bodies exist in various multibody
applications such as belt drives, gears, bearings, human joints etc. The contact description within multibody dy-
namics still involves some challenge, especially in the case of thousands or millions of contacts in the dynamic
system or in the case of very flexible bodies. The absolute nodal coordinate formulation (ANCF) is a finite element-
based approach which is especially designed to be used as a part of multibody system dynamics approach. ANCF
can predict the dynamic responses of flexible bodies subjected to large deformations in multibody applications [1].

The objective of this study is to analyze performance of different contact approaches in a framework of ANCF. In
this work, the contact mechanics methods such as widely used penalty method [2] and a method for solving large
cone complementary problems [3] are compared in case of simple two dimensional dynamic problems. Previously,
the novel method of Cone Complementary Problems (CCP) has implemented for rigid body dynamics [3].

Clearly, small time steps which can achieve numerical stability is necessary when simulating multiple contacts.
Therefore, an innovative time integration method to solve this class of problems is proposed by researchers, such
as linear complementarity problem (LCP) and nonlinear complementarity problem (NCP) [3, 4, 5]. While when
addressing a large number of contacts and polyhedral approximation used in friction [6], LCP and NCP solvers
remain limitations. In this paper, a time integration scheme used in contact dynamics with CCP-method is studied.

The penalty approach is imposed through the Karush-Kuhn-Tucker condition which implies that when the bodies
are not in contact, i.e. gN > 0, then the pressure is zero, i.e. normal force λN = 0. In contrast, when the bodies are
in contact, i.e. gN = 0, then the pressure is induced between the bodies, i.e. normal force λN < 0. This formulation
for normal contact is also known as Hertz-Signorini-Moreau condition.

The tangential part is constrained through the slip rate (γ̇) and the slip condition ( fc). The slip condition, defined
as

fc = ‖λT‖−µ|λN | ≤ 0 (1)

determines whether the bodies stick ( fc < 0) or slip ( fc = 0) on each other and λT is the tangential force. During
the stick state, the net slip rate needs to be zero (γ̇) = 0 and should be greater than zero during the slip state (γ̇)> 0.
The slip rate is related to the tangential gap through the direction of the tangential contact stress vector as

ġT = γ̇
λT

‖λT‖
(2)

The Cone Complementary Problem method represents the first order optimality conditions for the convex quadratic
optimization problem with conic constraints as

γ(l+1) = min
γ

1
2
γTNγ+pTγ ∀ γk ∈Ck (3)

where N and p are constant symmetric positive matrix and constant vector which need to depend on the initial
system of contact model and γ is the contact force at the contact point with the time step t(l+1) = t(l)+∆t . The
Coulomb friction model Ck follows as:
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(4)

where e is the vector of nodal coordinates and γ i,n and γ i,τ are components of contact force vector.
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Fig. 1: Illustration of the elements 1 and 2 of the flexible beam in contact. An arbitrary contact point is located by the position vectors r( j) via local constant
vectors xc1 and xc1

As shown in Fig. 1 contact i can take a place between body A and B. In Fig. 1, Φi is the distance gap function
between two contact points. When the two elements are in contact, they should not penetrate and thus a non-
penetration constraint is imposed at these contact points as

Φ1 =
∥∥∥r(1)c1 −r

(2)
c1

∥∥∥ (5)

where r( j) is the position vector of the contact point and for each ANCF element of the beam, it can be given
as r( j) = Sme

( j); Sm is the element shape function matrix; e( j) is the vector of nodal coordinates of element
j. However, it is worthy to note that finding of contact points for bodies with generic shapes is not trivial. For
example, if the contact bodies are concave shape, there will be a large number of contact points, and it may be not
possible to define the gap function.
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