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Multibody musculoskeletal models have enabled complex human movement simulation. Extensive range of 

studies have been performed on muscle element description. Up to now, almost all muscle-tendon units are defined 

as a nonlinear spring element (wired model) [1]. However, inertial effect is omitted in this model. Another 

drawback is that the nonlinear constitutive equation is derived based on small deformation assumption.  

The alternative is using finite element (FEM) method. Conventional biomechanical FEM algorithm is based 

on Lagrange description. It is time-consuming due to fine grid and muscle-bone contact. To overcome this, a 

dynamic musculotendon element model is proposed in the framework of Arbitrary-Lagrange-Euler (ALE) 

description [2]. To describe the mass flowing medium with large movement and deformation, ALE description is 

embedded in two types of generalized coordinates. The Eulerian generalized coordinates are used for describing 

the lateral movement of muscles, and Lagrange ones for length variation. 

Take a flexible knee musculoskeletal model as an example, shown in Fig. 1(a). Limb muscles are modeled as 

ALE elements on account of material softness and contact properties. The configuration of an element, as shown 

in Fig. 1(a)Fig. 1, is described by the position vector r and the arc-length parameter p . The governing equations 

of the element are obtained through the principle of virtual work, i.e., 
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Flexible musculotendon elements are fit for large displacement calculation. In the wired model, solving the 

equilibrium equation of muscle-tendon forces is time-consuming. Therefore, another approach is adopted: develop 

a passive tendon element and joint the muscle unit in series connection, shown in Fig. 1(c). Musculotendon 

equilibrium is directly solved by numerical integrator of the whole system without Newton-Raphson iteration in 

every substep. By this means, our numerical results have shown that large deformation has a non negligble effect 

on the former equilibrium equation. When muscle-tendon unit is stretched by 100% Green strain in isokinetic 

mode, muscle force cosmusF   is only 45.6% of tendon one tendonF in the current configuration. 

In addition, muscular path algorithms for the wired model can be transplanted to the ALE modeling approach. 

For the wired model, “Via-points” [5] and “wrapping surface” [6] algorithms are proposed in order to determine 

possible muscle paths. “Via-points” algorithms constrain the muscles to pass through imposed points. To 

accomplish this, a single ALE node is defined and attached to the imposed marker. It is testified by semitendinosus 

muscle, illustrated in Fig. 1(d)Fig. 2.  

“Wrapping surface” algorithms realize modeling of certain muscles over geometrical entities during 

movement. For ALE muscle elements, wrapping geometry degenerates to a pulley, and it is fixed in the wrapping 



bone, shown in Fig. 1(e)Fig. 2. The geometric parameters of wrapping pulley is based upon bone anatomy together 

with the thickness of muscle/tendon. A single ALE node is pre-defined as the pulley-muscle tangent point. A 

cable-pulley joint is built as the position and tangent constraint. By this means, there is no need to define elements 

and contact pairs of muscles wrapping the pulley. The algorithm has been validated on a flexible multibody knee 

model for rectus fermoris muscles.  

 

Fig. 1: Flexible muscle element based on ALE description. (a). The flexible knee model. Muscles are modeled as ALE muscle elements. 

(b). Schematic of a muscle element. (c). Schematic of musculotendon model. A Hill-type muscle model is implemented in the element; 

muscle and tendon elements are in series connection. (d) (e). Illustration of “Via-point” (d) and “Wrapping pulley” (e) algorithm. 
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