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Iterative refinement is a well-established technique to improve the accuracy of the solution to a system of
linear differential equations [1]. In recent times, a variety of efficient alternative algorithms have been developed
based on the basic iterative refinement algorithm. For instance, the Chebyshev algorithm accelerates the process
without loss of numerical stability. These ideas can be applied to the dynamic simulation of multibody systems.
Specifically, we consider a semirecursive algorithm whereby two velocity transformations that reduce the number
of coordinates are carried out. This formulation, also referred to as the double-step semirecursive formulation, has
already been analyzed in a number of papers, covering different aspects of its efficiency such as basic linear algebra
subroutines [2], sparse matrix implementation [3], parallel computing, rigid rod approximation [4, 5], sensitivity
analysis [6, 7] and flexible multibody application [8]. In this paper, iterative refinement concepts are applied to the
above multibody formulation in order to improve its (already high) computational efficiency.

Let us consider a closed-loop, rigid-body system whose topology can be described by a spanning tree after
the necessary joints have been temporarily removed according to the cut joint method, and whose configuration is
represented by a set of n dependent relative coordinates z. The equations of motion of the multibody system can
be written as[4, 9]:
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where T ∈ R6n×6n is the so-called path matrix, which represents the topology of the open-loop multibody system;
matrices Rd ∈ R6n×n and Rz ∈ Rn× f are the first and second velocity transformations; M̄ ∈ R6n×6n is the inertia
matrix; MΣ ∈R6n×6n and QΣ ∈R6n are the accumulated inertia matrix and applied force vector; Φz ∈Rm×n is the
Jacobian matrix of the loop-closure constraints; Φd

z ∈ Rm×m contains the columns of the Jacobian that correspond
to dependent coordinates; D ∈ R6n contains the absolute accelerations corresponding to null independent relative
accelerations.

The classic 4th-order Runge-Kutta scheme, which consists of four function evaluations, is used to solve the
equations of motion. Experience has shown that this integrator is a good tradeoff between computational effi-
ciency and ease of implementation. Iterative refinement can be applied to the first and third function evaluations
after reusing the generalized mass matrix factorization. First, the initial guess of the solution (independent relative
accelerations) is produced. Second, the iterative refinement process is carried out on the basis of the initial guess
and the generalized mass matrix factorization. This consists of three substeps: residual calculation, solution in-
crement calculation and solution update. Third and last, an appropriate termination criteria is set up to control the
refinement process.

By introducing the initial guess (z̈i)0, and the termination criteria where the initial weighted error ε is set to
be a constant more than 1, the iterative refinement process can be implemented numerically. The inputs of the
process are M̄Σ, Rz, F̂ and the LLT matrix factorization from the previous evaluation (RT

z M̄ΣRz ∼= LLT). Then
the following steps are taken:
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– Increase k = k+1

where ek = (z̈i)k− (z̈i)k−1, and wk = c1
∣∣(z̈i)k

∣∣+ c2. c1 and c2 represent the relative and absolute tolerance,
respectively. These parameters can be different for each type of variables, such as linear translations and rotations.
The weighted error norm reaches convergence when ε < 1.

In order to investigate the accuracy and computational efficiency of the presented iterative refinement algo-
rithm, a medium-size 16DOF sedan vehicle model is simulated here with different time steps. Further, a large-size
40DOF semitrailer truck model is simulated to investigate how the size of the vehicle system affects the efficiency.
Results show efficiency gains of 2.7% and 9.5% for the sedan vehicle and semitrailer truck, respectively, along
with high accuracy. Further, the algorithm is more efficient for large-size multibody systems. Overall, an itera-
tive refinement algorithm has been presented in the context of efficient time integration schemes for the dynamic
simulation of medium-large multibody systems.
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[2] M. González, F. González, D. Dopico, and A. Luaces, “On the effect of linear algebra implementations in real-time
multibody system dynamics,” Computational Mechanics, vol. 41, no. 4, pp. 607–615, 2007.

[3] A. F. Hidalgo and J. Garcı́a de Jalón, “Real-time dynamic simulations of large road vehicles using dense, sparse, and
parallelization techniques,” J. Comput. Nonlinear Dynam, vol. 10, no. 3, p. 031005, 2015.
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