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Improving the understanding on the dynamics of constrained mechanical systems leads to useful design gains 
in many engineering areas. Typically, the equations of motion for this class of systems are derived and cast in the 
form of a set of differential-algebraic equations (DAEs) of high index. However, both the theoretical and the 
numerical treatment of DAEs is a delicate and difficult task [1]. The present formulation is based on a new set of 
equations of motion, represented by a coupled system of second order ODEs [2]. Τhe original configuration 
manifold M  possesses general geometric properties. Moreover, there exists a set of k  motion constraints 
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where the arrays q  and v  include the generalized coordinates and the components of the corresponding velocity 
of the system. When a constraint is holonomic, Eq. (1) can be integrated in the form ( ) 0R q  . Under the action 
of such constraints, the equations of motion of the class of systems examined can eventually be put in the form 
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on manifold M . These quantities can be expressed in the following form over a basis of the cotangent space pT M  
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where the usual convention on repeated indices applies to all indices, except R  [3]. The quantities R  are 
Lagrange multipliers, while i jg  and i j  represent the components of the metric and the connection on manifold
M . Also, the quantities RRm , RRc , RRk  and Rf  are specified by the action of the R -th constraint [2]. Finally, for 
each holonomic or non-holonomic constraint, Eq. (2) is complemented by an ODE with form 
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For computational purposes, it is convenient to put the equations of motion (2) in the following weak form 
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Also, for each holonomic constraint, as expressed by Eq. (4a), the following relation is satisfied 
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for an arbitrary multiplier R , while a non-holonomic constraint equation can be treated in a similar manner. 
Moreover, in a weak formulation, it is advantageous to consider the position, velocity and momentum variables 
as independent quantities [4,5]. For this, two new velocity fields,   and  , are introduced, which are eventually 
forced to become identical to the true velocity fields v  and  . To achieve this, Eq. (5) is augmented by the terms 
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where i  and R  represent new sets of Lagrange multipliers, while i  and R  are components of covectors 
belonging to the same vector space as those with components i  and R , respectively. Next, appending Eqs. (6) 
and (7) to Eq. (5) yields the weak form of the equations of motion for the class of systems examined as a three 



field set of equations for the independent position, velocity and momentum type quantities. Finally, all these lead 
to an augmented Lagrangian formulation [6-8], in a natural way, by just adding suitable penalty terms 
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where, for holonomic constraints 
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The weak form developed provides a firm basis for constructing appropriate numerical discretization schemes, 

leading to improvements over existing schemes. The validity and efficiency of such a scheme was tested and 
illustrated by applying it to a large number of example mechanical systems. First, it was verified that the scheme 
developed passes successfully all the tests related to a special set of benchmark problems, chosen by the multibody 
dynamics community [9]. In addition, the new scheme was also applied successfully to solve large scale industrial 
applications. For instance, in Fig. 1 are presented results for a complex ground vehicle model, executing a typical 
double lane change maneuver. These results were compared with results obtained by applying two state of the art 
numerical codes (i.e., ADAMS and MotionSolve). Both of these codes set up the equations of motion and solve 
them numerically as a system of DAEs. The vehicle model shown in Fig. 1a is composed of a basic powertrain 
system, a complex steering system, together with involved front and rear suspension systems with jounce and 
rebound bumpers. Also, the tires were modeled using the well-known Pacejka tire model. Here, some 
characteristic results obtained on tire forces and car velocities are presented and compared in Fig. 1b, where the 
results of the new method are labeled by LMD. 
 

  
 

Fig. 1: Numerical results for a real car model: (a) Front right tire lateral force and (b) vehicle lateral velocity. 
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