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In this paper, we present a formulation for spatial rigid body motion based on a set of non-redundant, ho-
mogeneous local velocity coordinates. The initial motivation for the present work was the investigation of local
velocity coordinates of a first order H(curl)-conforming finite element proposed by Nédélec [1]. Since the latter
finite element offers six non-redundant – regarding their physical interpretation – equivalent degrees of freedom,
the results of this research turned out to be relevant for rigid bodies as well, and are presented herein.

In contrast to the common practice, the proposed approach renounces the distinction between translational
and angular velocity in the sense that it only makes use of translational local velocities. To obtain the new set
of coordinates, we use the velocity vectors of six properly selected points of a rigid body, and represent the rigid
bodys translational and rotational velocities in terms of six local translational velocities. The points at which the
six local velocities are determined are, for example, located on the six edges of a tetrahedron or on the six lateral
surfaces of a hexahedron, see Fig. 1. While the linear relation to the conventional local translational and angular
velocity vectors might be obvious in the hexahedral case, it is not apparent in the tetrahedral case. To obtain
position coordinates and the orientation of the body, we use the exponential map on the special Euclidean group
SE(3). In order to solve the incremental motion vector differential equation, we introduce the inverse of the tangent
operator corresponding to our unified motion approach. Furthermore, we use a recently presented 4th-order Runge-
Kutta time integration scheme [2], which we have extended in a way, such that it can be used with respect to our
approach and elements of SE(3). We use a benchmark problem as a numerical example to show the applicability
of our approach.

In the first part of the paper, we present the theoretical fundamentals of our approach and discuss its differ-
ences with respect to well established formulations like the natural coordinates [3] or Lie-group methods [4]. Our
proposed approach unifies the description of rigid body motion on velocity level. This unification is obtained, by
using the velocity vectors of six properly selected points of a rigid body, for example, located on the six edges of a
tetrahedron or on the six lateral surfaces of a hexahedron, see Fig. 1. A condition for the selection of such points
will be presented in the final paper. Using this approach, we obtain six fully equivalent (=unified) local velocity
coordinates w =

[
w1 w2 w3 w4 w5 w6

]T.
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Fig. 1: Basic geometries for unified local velocity coordinates. S denotes the center of mass of the rigid body. The six points, used for the velocity projection
are denoted with 1. . .6. The corresponding six unified velocities are denoted by w1 . . .w6. Fig. a) shows the hexahedral case, Fig b) shows the tetrahedral
case.

The second part of the paper is dedicated to the derivation of the governing equations of motion (EOM). We



use the Gibbs-Appell equations [5] to obtain them, reading

Mẇ +Γ(w)w = Q(H, w, t). (1)

Herein, the mass matrix M is constant. The vector ẇ denotes the time derivative of the local velocity coordinates.
The vector Q summarizes all external forces and torques acting on a rigid body with respect to the local (body
fixed) coordinate system. Velocity dependent loads are given in terms of the six velocity coordinates w. Loads,
which are depending on the current position or orientation of the body, are formulated in terms of group elements
H ∈ SE(3). Special time dependencies can be considered within the above mentioned framework. The vector Γw
represents the quadratic velocity term. Furthermore, we show how the obtained EOM can be converted into the
Newton-Euler equations. In the third part of the paper, we show how our approach can be used to obtain elements
of SE(3). Therefore, we introduce the inverse of the tangent operator T–1

SE(3) corresponding to our unified motion
approach,

T–1
SE(3)(n) = D +

1
2

T1(n) + K(n)T2(n). (2)

The structure of the matrices D, T1 and T2 in Eq. (2) depends on the chosen velocity coordinates. The matrices
T1 and T2 depend on the incremental motion vector n, while K(n) is a coefficient matrix. The update of a SE(3)
group element is determined by using the exponential map on SE(3),

ṅ = T–1
SE(3)(n)w (3)

H = H0 expSE(3) (n) .

In order to solve the ordinary differential equation of the incremental motion vector n, we use a up-to-date time
stepping scheme [2], which we adapted to solve Eq. (1) and Eq. (3). Subsequently, we demonstrate the applicability
of our approach with a numerical example. Moreover, we provide convergence studies of the extended integration
scheme. Finally, we discuss the results obtained from the numerical example, the advantages and disadvantages of
our approach.

Concluding, we found a formulation to describe spatial rigid body motion in terms of non-redundant, homoge-
neous local velocity coordinates. We obtain equations of motion with a simple structure, which can be integrated
using adopted Lie-group time integration schemes. Currently, the proposed approach offers no computational ad-
vantages compared to state of the art formulations but it could be useful in cases, in which one does not want to
distinguish between translational and rotational motion.
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