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Increasing industrial demands on reliability and efficiency of modern moving engineering devices require
advanced modelling techniques during the design process. Virtually all such systems are assemblies made out of
multiple components that interact with each other during operation. The forces required to execute desired motions
are associated with stresses, noise and vibrations. Thus, it is insufficient to model multibody (MB) systems as rigid
bodies and extract boundary forces to perform subsequent standard finite element (FE) analyses. Flexible MB
simulations where the system is spatially discretized are, therefore, inevitable. However, most FE models of real-
world problems contain a huge number of degrees of freedom (DOFs) that cannot be efficiently simulated without
model reduction techniques.

Generalized component mode synthesis (GCMS) [1] is a promising efficient alternative to existing flexible MB
formulations, such as the floating frame of reference formulation (FFRF), since it preserves a linear relationship
between the displacement field and the DOFs, yielding constant system matrices, which is not the case for the
FFRF implemented in most commercial flexible MB simulation packages. Moreover, it is a generic formalism,
easily applicable to any MB system subjected to large reference motion but small deformations, which is the case
for the majority of engineering systems, such as vehicles, robots and aircraft, since large deformations severely
impair or even destruct the system and are, therefore, usually unwanted.

Both, the FFRF as well as the GCMS approximate the flexible deformation by a linear combination of com-
ponent modes. In the case of the FFRF, the component modes are usually the eigenmodes of vibration limited
to the frequency range of interest. If the deformation is approximated by vibration modes, the reduction matrix
containing column-wise the eigenmodes is well-conditioned, since the eigenvectors are linearly independent even
for repeated eigenvalues. Hence, the reduction matrix of the FFRF does not introduce numerical errors. Whereas,
the GCMS reduction matrix Φ is in many cases ill-conditioned, f. e., in the order of 106 to 1017 for the analysed
beam-like models, due to linearly dependent GCMS modes that may arise due to the special structure of Φ. These
linear dependencies may lead to unsolvable problems, since they preclude the factorization of the system Jacobian
impossible.

There is past work concerned with a rigorous mathematical derivation of the GCMS modes and equations of
motion [1, 2]. Also, the formulation has been successfully applied to engineering problems [3, 4], but the issue of
linear dependencies has not received much attention despite its importance. It was marginally reported in [1, 2], but
has not been addressed in the available literature. Moreover, it has been believed that dependent modes only arise
for symmetric problems, which is, in general not true. Hence, the aim of this contribution is to shed light on this
problem inherently present in the GCMS and give suggestions how to handle the linear dependencies appropriately.

The GCMS formulation exploits a modal superposition reduction method, where the flexible deformation is
approximated by a linear combination of vibration modes to reduce the system size from a large number of DOFs
to a significantly smaller one. The so called generalized component modes, or GCMS shape vectors, account not
only for large rigid body motion, but also represent the deformation modes in any possible orientation, leading to a
linear configuration space. The reduced set of GCMS coordinates q is related to the full set of FE nodal coordinates
c via, c ≈Φq with dim(q)� dim(c). The GCMS reduction matrix Φ contains the translational Φt ∈ R3Nn×3, the



rotational Φr ∈ R3Nn×9 and the flexible Φf ∈ R3Nn×9Nm GCMS shape vectors, i.e. Φ= [Φt Φr Φf], where
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with k, l = 1,2,3 and m= 1, . . . ,Nm represent the columns ofΦt,Φr andΦf, respectively. In Eqs. (1) to (3), el ∈R3

denotes the orthonormal set of Cartesian base vectors, X i
k the i-th nodal coordinate of the k-th coordinate direction

of the undeformed FE model, φ k
m denotes the k-th component of the m-th eigenmode of vibration and Nn as well as

Nm the number of nodes and eigenmodes, respectively.
The significance of the careful mode selection is illustrated with the following example. The first natural

bending mode of an unconstrained square-sectioned beam and its nine corresponding flexible GCMS modes are
visualized in Fig. 1. Considering the first and the second natural bending mode, which form a repeated mode pair,
the first three GCMS modes of the first and second bending eigenmodes are identical. Moreover, the fourth to sixth
GCMS modes are related by the factor of negative one and are therefore directly proportional. Likewise, as may
be seen in Fig. 1, the set of the first three GCMS modes within each eigenmode is directly proportional to the set
of the second three GCMS modes, i.e. fφ1l

m ∝
fφ2l

m with m = 1,2 and l = 1,2,3. Consequently, only nine out of the
full set of 18 GCMS modes are, in this case, linearly independent.
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Fig. 1: First bending eigenmode φ1 of an unconstrained square-sectioned beam and the nine corresponding flexible GCMS modes fφkl
1 according to Eq. (3).

It is shown in the paper, how the Cosine similarity and the Singular Value Decomposition may be used to
identify and eliminate directly proportional GCMS modes, as shown in Fig. 1, and linear combinations between
flexible and rigid body motion shape vectors, which may also arise.

The above example shows the importance of the mode selection process. The systematic investigation of
GCMS modes, which has not been addressed in the open literature, is not only required to obtain a solvable system
of equations, but enables a further reduction of the GCMS coordinates and therefore a gain in efficiency. In conclu-
sion, the significance of GCMS modes for different problems is covered in a rigorous manner; the understanding
of the mode selection shall improve the formulation’s applicability. The new findings are illustrated by numerical
experiments of beam-like models with different cross-sections and a crankshaft of a reciprocal combustion engine.
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