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Optimal control problems of multibody systems are often defined for mechanical systems, as e.g. industrial
robots, in order to follow a specific trajectory or to increase the overall performance. Modern robot design will in-
clude promising lightweight techniques in order reduce mass and energy consumptions in production lines. There-
fore, optimal control problems have to be defined for flexible multibody systems in which the flexible components
have to be able to describe large deformations during dynamic analysis.

In the present study, the absolute nodal coordinate formulation (ANCF), which has been developed particularly
for solving large deformation problems in multibody dynamics [1], is utilized. In contrast to classical nonlinear
finite elements in literature, the ANCF does not use rotational degrees of freedom and therefore does not neces-
sarily suffer from singularities emerging from angular parameterizations. The benefits of the ANCF are as well
the isoparametric approach and the existence of a consistent displacement field. Moreover, the most essential ad-
vantage of the ANCF is the fact that the mass matrix remains constant with respect to the generalized coordinates
during the entire dynamic simulation.

The equations of motion of the constrained flexible multibody system can be expressed as a system of differen-
tial algebraic equations including the nonlinear elastic force terms in the ANCF. A beam finite element described in
the ANCF with bending, axial and shear deformation properties is used which accounts for cross section deforma-
tion in order to avoid locking. This proposed element is available and tested extensively in literature, see e.g. [2, 3].
In general, the optimal control problem could be defined as an optimization task described by minimizing a cost
function. The gradient of this cost function can be computed very efficiently also in complex multibody systems
when incorporating the adjoint method, see e.g. [4] for a detailed derivation of the adjoint equations deduced
from the system of differential algebraic equations in index 3 notation. Due to the fact that the ANCF includes
a constant mass matrix with vanishing derivative, the equations reduce to a simpler form, also pointed out in [5].
There, as well a gradient-based optimization approach using adjoint equations for flexible ANCF bodies has been
presented [5], with special focus on sensitivity analysis. A first and second order adjoint sensitivity analysis in
the framework of the ANCF is as well studied in [6] and [7], respectively. In [6], the effect of Young’s modulus
on elastic deformation of a planar single pendulum is presented. In [7] the dramatically decrease in computa-
tional costs for a large number of design variables is shown when comparing the adjoint method and the direct
differentiation method. The direct differentiation method and the adjoint method for sensitivity analysis is as well
compared in [8]. Moreover, sensitivity analysis for multibody systems formulated on a Lie group using the direct
differentiation and the adjoint method can be found in [9].

In contrast to the mentioned literature above, in which the adjoint method is derived for sensitivity analysis for
multibody systems with flexible components, in the present paper, the adjoint gradient computation is derived for
optimal control problems for flexible multibody systems. The multibody system consisting of rigid and flexible
bodies, forces and constraints acting between these bodies can be described by equations of motion in the following
form:

M(q)q̈ = Qext(q, q̇,u, t)+Qelast(q, t)−C
T

q(q)λ
C(q) = 0 (1)



Here, q denotes the vector of generalized coordinates. They are subject to the holonomic constraints C(q) = 0,
which enter the equations of motion via the constraint Jacobian Cq multiplied by the vector of Lagrange multipliers
λ. The force vector Qext(q, q̇,u, t) describes the external force vector incorporating a control u(t) and Qelast(q, t) is
the elastic force vector accounting for the elastic deformation of the flexible bodies. In the optimal control problem
the goal is to determine the control u(t) which minimizes a cost functional. A cost function can be specified in the
general form

J =
∫ t1

t0
h(q, q̇,u,λ, t)dt (2)

in which t0 and t1 are the initial and final time of dynamic simulation, respectively. To evaluate the gradient of this
cost function the adjoint method is used in this paper following the derivation in [4]. In addition to the derivation
in [4], elastic components will be included here and the elastic force vector will be defined in the ANCF follow-
ing [2].

Acknowledgment
K. Nachbagauer acknowledges support from the Austrian Science Fund (FWF): T733-N30.

References
[1] A. Shabana, “Definition of the slopes and the finite element absolute nodal coordinate formulation,” Multibody System

Dynamics, vol. 1, no. 3, pp. 339–348, 1997.

[2] K. Nachbagauer, A. Pechstein, H. Irschik, and J. Gerstmayr, “A new locking-free formulation for planar, shear de-
formable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation,” Multibody
System Dynamics, vol. 26, pp. 245–263, 2011.

[3] K. Nachbagauer, “State of the art of ANCF elements regarding geometric description, interpolation strategies, definition
of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements,” Archives of
Computational Methods in Engineering, vol. 21, pp. 293–319, 2014.

[4] K. Nachbagauer, S. Oberpeilsteiner, K. Sherif, and W. Steiner, “The use of the adjoint method for solving typical opti-
mization problems in multibody dynamics,” Journal for Computational and Nonlinear Dynamics, vol. 10, 2014.

[5] A. Held and R. Seifried, “Gradient-based optimization of flexible multibody systems using the absolute nodal coordinate
formulation,” in Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics 2013, Zagreb, Croatia, 1-4
July 2013, 2013.

[6] T. Pi, Y. Zhang, and L. Chen, “First order sensitivity analysis of flexible multibody systems using the absolute nodal
coordinate formulation,” Multibody System Dynamics, vol. 27, no. 2, pp. 153–171, 2012.

[7] J.-Y. Ding, Z.-K. Pan, and L.-Q. Chen, “Second order adjoint sensitivity analysis of multibody systems described by
differential-algebraic equations,” Multibody System Dynamics, vol. 18, pp. 599–617, 2007.

[8] D. Dopico, A. Sandu, C. Sandu, and Y. Zhu, “Sensitivity analysis of multibody dynamic systems modeled by ODEs and
DAEs,” Multibody System Dynamics, Computational Methods in Applied Sciences, Terze Z. (eds), vol. 35, 2014.
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