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Contact in multibody systems can be modelled through unilateral constraints. This often results in a dynamics
formulation that can mathematically be stated as a linear complementarity problem (LCP) or mixed linear comple-
mentarity problem (MLCP). There is a wide range of algorithms in the literature to solve LCPs and MLCPs, which
can be classified into two types: direct and iterative methods [1]. Iterative solvers are computationally efficient but
not very accurate, whereas direct solvers give accurate solutions at a relatively high computational cost.

Choosing the solver that suits the problem at hand best is not an easy task, especially when there is a time
constraint and a solution with the desired tolerance cannot be found. In this case, the simulation accuracy can
be increased significantly if we measure the error of all computed solutions at algorithm runtime and choose the
solution with the least error. In numerical optimization, the natural residual [2] is defined as a measure of closeness
of the computed result to being a solution of the complementarity problem. Moreover, the Fischer-Burmeister merit
function can be used to capture the error in dynamics simulations [3]. However, all these functions do not take into
account the different physical nature of impulses and velocities and thus can suffer from unit inconsistency. In this
paper, we present a unit-consistent energy-like error metric for MLCP solvers that does not require any reference
solution and can be computed online in order to improve simulation accuracy.

Let us consider a multibody system with generalized velocities v ∈Rm and transformation Jv = w that defines
the constraint subspace where w ∈ Rn represents the velocities in that subspace and J ∈ Rn×m is the constraint
Jacobian. The dynamic equations using a finite difference approximation for the accelerations can be written as[

M −JT

J C

][
v+

hλ+

]
+

[
p

1
hΦ

]
=

[
0
w

]
(1)

where h is the time step size, v+ are the unknown velocities at the end of the step, v are the known velocities at
the beginning of the step, M is the mass matrix, and p = Mv+ hf depends on the generalized applied forces f.
The values of the generalized constraint forces λ+ are specified by the nature of the constraint (e.g., λ+

n ≥ 0 for a
normal contact force, and λ

+
t ∈ [−µλn,+µλn] for a friction force component if the box friction approximation is

used). Moreover, the constraints can be regularized, which introduces the compliance matrix C and the constraint
violations in Φ. The general form of the MLCP that needs to be solved at each step is

Ax+b = w (2)
0≤ u−x ⊥ wu ≥ 0
0≤ x− l ⊥ wl ≥ 0

}
(3)

where A = JM−1JT +C is the lead matrix, b = JM−1p+ 1
hΦ, and the variables x = hλ+ ∈ [l,u] are the gener-

alized constraint force impulses subject to lower and upper bounds l and u. The non-negative components of the
constraint-space velocity w = wl−wu are complementary to the lower and upper bounds, denoted by operator ⊥.

In order to solve the MLCP, the algorithm performs a series of iterations and computes some intermediate
solutions, which satisfy Eq. (2) so that error occurs only in the conditions in Eq. (3). To compute the error, we
approximate the lead matrix A by its diagonal matrix Ã = diag{a11, . . . ,ann} to break down Eq. (2) into scalar
equations aiixi + bi = wi with two unknowns each, xi and wi. This is equivalent to not considering any coupling
effects between constraints in order to analyze each constraint i separately and compute the error δei associated
with it. Figure 1 illustrates the isolines of the error in the plane x−w.



Fig. 1: LCP error isolines for normal (left) and friction (right) force constraints for unit effective mass and compliance aii = 1. Zero error for the feasible set
of solutions (solid blue line) and quadratically increasing error along the dashed lines.

We decompose the computed constraint reaction impulse xi and constraint-space velocity wi per constraint into

xi = x0,i +δxu,i−δxl,i and wi = wl,i−wu,i, (4)

where x0,i = max
(
min(xi,ui) , li

)
, i.e. clamped to the upper and lower bound ui and li. One of the impulse errors

δxu,i ≥ 0 or δxl,i ≥ 0 is non-zero if xi exceeds ui or li, respectively. The constraint-space velocity is split into
non-negative components wl,i ≥ 0, and wu,i ≥ 0, one of which must always be zero. Given σl,i = (x0,i +δxu,i)− li
and σu,i = ui− (x0,i +δxl,i), we can define the error per constraint as
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This definition of the error takes the inverse effective mass and compliance aii associated with each constraint to
compute the energy error. This allows us to combine the individual constraint error to establish a single energy-like
error for the whole system at time tk by taking the `1-norm of the component vector
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It can be easily seen that the unit-consistent MLCP metric can reach zero error if and only if a valid solution
to the MLCP is found. This unit-consistent metric does not require any reference solution, which can be very
expensive to compute for large-scale systems. Simulations were performed to analyze the error of direct and
iterative solvers. The results show the expected different behaviours of each solver. Moreover, the proposed unit-
consistent error metric agrees qualitatively with existing error functions which mix impulses and velocities [2, 3].
The error metric is inexpensive to compute. This can be done at runtime without compromising the performance
noticeably. If the solver does not terminate due to an iteration limit, it is possible to determine the solution with the
least error which improves the numerical stability and reduces the risk of simulation instabilities or “blow-ups”.
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[1] J. J. Júdice, “Algorithms for linear complementarity problems,” in Algorithms for continuous optimization, pp. 435–474,

Springer, 1994.

[2] J.-S. Pang, “Error bounds in mathematical programming,” Mathematical Programming, vol. 79, no. 1-3, pp. 299–332,
1997.

[3] C. Lacoursière, Y. Lu, J. Williams, and J. Trinkle, “Standard interface for data analysis of solvers in multibody dynamics,”
in Canadian Conference on Nonlinear Solid Mechanics (CanCNSM)(July 2013), vol. 8, 2013.


