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In the eigenvalue problem, for structures where the parameternon-uniformities are not particularly pronounced and/or 
geometries are not complicated, the assumed mode substructure synthesis method (AMSSM) has a great capability of 
yielding superior accuracy for the same number of degrees of freedom (DOF) or the same accuracy with fewer DOF than 
finite element method (FEM) [1]. However, different from FEM, AMSSM needs more laborious procedures to satisfy 
compatibility conditions of the system [2]. In this paper, an efficient AMSSM withsimplified procedures for 
satisfyingcompatibility conditionsis presented. To eliminate a serial kinematics expression in the conventional AMSSM, 
nodal displacement (ND) isintroduced. These ND form a bridge between local deformations in the members of the 
structure. This paper also shows that AMSSM has excellent convergence performance in the large deflection static analysis 
of multi beam structures. Some numerical examples are introduced and results like displacement and/or stress are 
investigated. The results are validated with those obtained from commercial Nonlinear FEM (NFEM) code and 
convergence performance is also compared. 
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Figure 1. Configuration of a beam 
before and after deformation 

Figure 2. (a) Configuration of the structure and (b) geometry of the unit 
structure 

 
The following assumptions are employed. The beam is made of homogeneous and isotropic material. The beam has a 

slender shape so that shear and rotary inertia effects are neglected. The beam is in-extensible and only in-plane 2-D motion 
occurs. Fig. 1 shows the configuration of a cantilever beam before and after deformation occurs. Here,  1 2ˆ ˆ,  n n  is an 

inertial frame and  ˆ ˆ,  k kx y  is a reference frame attached to the thk  beam. The point kO  lies on the fixed end and neutral 

axis of the thk  beam. The initial angle between 1n̂  and ˆkx  is denoted as  k  and length of the beam is kL . Before 

deformation, the generic point on the thk  beam is denoted as kP  and the distance from kO  to kP  in the direction of ˆkx  is

 kx . After deformation occurs, kP  moves to  'kP . The displacement of the generic point can be expressed as ˆ ˆk k k ku x w y . 

 ,  ,  n n nX Y   and  ,  ,  m m mX Y   are ND of the thn  and thm  node, respectively.  ,  ,  n n nP F M  and  ,  ,  m m mP F M  are a 

horizontal force, a vertical force, and a moment applied to the thn  and thm  node, respectively. 



In the present work, the assumed mode method is used to approximate the following deformation variables. 
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Here, 1 k
iq , 2 k

iq , and 2
k
ip  are generalized coordinates for the deformation variables and numbers 1 , 2 , and   are the 

numbers of generalized coordinates used for the deformation variables.  k
kx  and  k

kx  are mode functions for 

approximating the variables. Applying Hamilton’s principle, static equilibrium equations are derived but they are omitted 
for lack of space. 

An auxetic structure [3, 4] is given in the Fig. 2. The structure is subjected to the vertical forces having the same 
magnitude  F . Parameters of this example are given in the Table 1. Fig. 3 shows convergence of the displacement of the 
vertex circled in the Fig. 2 (a) and maximum stress. In both methods, displacement converges at the similar DOF. On the 
other hand, stress result obtained with the proposed method converges much faster than that obtained with NFEM. 
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Figure 3. The convergence of (a) the displacement and (b) maximum stress obtained with the proposed method and NFEM
 
In this study, AMSSM considering geometric nonlinearity is developed and convergence performances of the proposed 

method and NFEM are compared each other. In conclusion, only 1/30 DOF of NFEM model is sufficient to obtain the 
converged stress result in the proposed method. 
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