
Extended Abstract The 5th Joint International Conference on Multibody System Dynamics

June 24 – 28, 2018, Lisboa, Portugal

partsival – Collision-based Particle and many-body Simulations on
GPUs for Planetary Exploration Systems

Roy Lichtenheldt1, Simon Kerler1,2, Andreas Angerer3 and Wolfgang Reif2

1Institute of System Dynamics and Control, German Aerospace Center (DLR), Roy.Lichtenheldt@dlr.de
2Institute for Software & Systems Engineering, University of Augsburg, reif@informatik.uni-augsburg.de

3XITASO GmbH, andreas.angerer@xitaso.com

Developing new or optimizing existing locomotion systems for planetary exploration faces two major chal-
lenges: First, environmental conditions like reduced gravity are hard to mimic in laboratories. Second, physical
prototyping can be time-consuming and cost-intensive. To address both, virtual prototypes are simulated to verify
new designs and concepts, e.g. for rover wheels, before first physical prototypes are constructed. Often a method
to model soil is required to correctly simulate tool interactions. A common way is the Discrete Element Method
(DEM) which discretizes soil volumes into particles. The software currently used for DEM computations at DLR
is a CPU-bound, multi-threaded engine. Due to its high degree of parallelism, the DEM profits from being exe-
cuted on graphics processing units (GPUs). In order to make absolute statements and predictions, high accuracy is
required and therefore the penalty based contact formulation is preferred. However, most of the DEM implemen-
tations for GPUs employ constraint based, hard contact formulations [1], e.g. Project Chrono [2]. Therefore, this
paper presents partsival – a collision-based particle simulation framework targeting graphics cards [1].

Fig. 1: Funnel piling application (left), single wheel test simulation of a rimless wheel [9] (right), 6 m single wheel test, ≈ 20s of time (bottom)

GPU computing is performed via OpenGL 4.3+ compute shaders which ensures platform and vendor inde-
pendence. Partsival integrates natively into OpenSceneGraph [3] and consequently features an object-oriented,
hierarchical software architecture. A central particle system class is configured by adding one or more simulation
steps, each of which defines a single action, like contact dynamics or integration. To facilitate the use of partsival,
wrapper functions shift the focus from programming to configuration in user models. Instanced rendering is used
for efficient on-line visualization of simulations. Since renderer and compute shaders have access to the same GPU
memory, particle data is accessed directly without the need of copying between GPU and CPU, therefore avoiding
PCIe (Peripheral Component Interconnect Express) and context switching latency.

Partsival currently features pre-defined simulation steps for state of the art [4] as well as advanced inter-particle
and particle-mesh contact models [5, 6]. The framework is extendable either via additional steps derived from the
existing classes or by an editable plugin shader class. In order to integrate the equations of motion, an integration
scheme particularly developed for partsival is used [7]. Due to its novel approach, implicit time integration be-
comes available without renewed contact detection during corrector iteration. A further improvement in long dense
packing simulations is gained by dynamic boundaries, i.e. activating and deactivating particles depending on the



tool position [8] (see the differently lighted particles of the right top image in Fig. 1). The engine also supports
switching between single and double floating point precision at startup allowing to use fast single precision for
relative statements (e.g. wheel-optimization scenarios) and double precision for absolute statements in prediction.

Fig. 1 depicts three example applications: The single wheel test is a typical application in planetary exploration
needed to improve traction on loose sandy terrain, featuring dense particle packings. The funnel piling example
is featuring both, loose particulate flow and dense packing including pile formation on the bottom. For validation
of partsival, an existing example of the CPU code has been recreated. Thereby the angle of repose after 3 s of
simulation, as well as the overall particle behaviour have been compared with good agreement as shown in Fig. 2
(right). Based on the funnel piling example a performance and scaling evaluation has been carried out for both,
partsival and the previously used CPU code. For comparability, both used the LICHTENHELDT-jolt integration
scheme [7] and identical contact models, as well as boundary conditions. The CPU code has been executed in

102

103

104

105

106

103 104 105 106

r t

np

Scaling of DEM simulations

CPU Intel Xeon E5−2697v2
partsival DP Nvidia GP100
partsival SP Nvidia GP100

0,1

0,08

0,06

0,04

0,02

0

-0,02

-0,04

-0,1 -0,05 0m

m

Fig. 2: Performance evaluation by comparing the real-time factor for different numbers of particles (lower is better) in double logarithmic scale (left);
comparison of simulation results of partsival (colored particles and red lines) and the CPU code (grey translucent particles and orange line) (right)

double precision, whereas partsival is used in both, single and double precision. The results in Fig. 2 (left) indicate
that partsival outperforms the CPU code for all tested numbers of particles (up to ≈ 7.5 · 105) on a single GPU.
It has to be stated that the CPU code features an optimized O(n logn) contact detection, whereas partsival is still
O(n2) in the first version. Hereby n denotes the number of particles. By speeding DEM and many body simulations
up by orders of magnitude, partsival allows for faster computations as well as to simulate scenarios which would
have not been feasible on the CPU. Such an example can be seen in Fig. 1 (bottom) while the simulation completed
in 2 hours and 23 minutes, whereas a comparable CPU simulation would have required at least a full day.

References
[1] Kerler, S.; Collision-based Particle Simulations on GPUs for Planetary Exploration Systems, Masters Thesis, Univer-

sity of Augsburg, 2017
[2] Tasora A. et al.; Chrono: An open source multi-physics dynamics engine. In HPC in Sci. and Eng., Springer, 2016.
[3] Open Scene Graph; http://www.openscenegraph.org/, 12/05/2017
[4] Obermayr, M.; Prediction of Load Data for Construction Equipment using the DEM, Dissertation, Stuttgart, 2013
[5] Lichtenheldt, R., Schäfer, B.; Planetary Rover Locomotion on soft granular Soils - Efficient Adaption of the rolling

Behaviour of nonspherical Grains for Discrete Element Simulations, Particle-based Methods III, S. 807-818, ISBN
978-84-941531-8-1, 2013

[6] Lichtenheldt, R.; Lokomotorische Interaktion Planetarer Explorationssysteme mit weichen Sandböden - Modellbil-
dung und Simulation, Verlag Dr.Hut, ISBN 978-3-8439-2704-8, 2016

[7] Lichtenheldt, R.; A stable, implicit time integration scheme for Discrete Element Method and contact problems in
dynamics, Particle-based Methods V, ISBN: 978-84-946909-7-6, CIMNE, 2017

[8] Lichtenheldt, R.; Covering shock waves on Mars induced by InSight’s HP3-Mole , Coupled Problems VII, ISBN:
978-84-943928-3-2, Artes Grficas Torres S.L., 2017

[9] Stubbig, L., Lichtenheldt, R., Becker, F., Zimmermann, K.; Model-based development of a compliant locomotion
system for a small scout rover, 59th Int. Scientific Colloquium, Ilmenau, 2017


