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We study the dynamics of a Castor wheel driven by a constant force. The wheel touches the horizontal
plane: depending on an interaction model different dynamical effects appear. We explore three models: ideal
non-holonomic constraint, dissipative non-holonomic constraint and dry friction in the contact patch between the
wheel and the plane. For both models of non-holonomic constraint, we plot the phase portrait of the system and
find the domains where the constraint reaction belongs to the friction cone. The third model is a model of the de-
formable rough plane described in [1]. Due to differential form of Coulomb dry friction and dynamic distribution
of normal stresses in the contact patch, we obtain the model that produces friction forces and torques depending
both on slipping velocity and angular velocity of the wheel. Numerical simulations show that for some combina-
tions of the parameters the rectilinear motion becomes unstable and the oscillations appear. This effect is known
as shimmy phenomenon [2].
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Fig. 1: Statement of the problem
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Fig. 2: Phase portrait for ideal non-holonomic
constraint with slipping areas.
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Fig. 3: Shimmy for the motion.

Absolutely rigid wheel of mass m and radius R rotates about horizontal axis Cη with respect to the massless
fork. The force T that is constant in the inertial coordinate frame is applied to the fork in the point B (Fig. 1).
The offset — the distance between the projections of the points C and B – is denoted by b. The coordinates of the
system are: the coordinates x, y, z of the wheel’s center C on the supporting plane, the course angle θ between the
inertial axis Ox and the central plane of the wheel and the angle of the wheel’s proper rotation χ . The axes Cξ ηz
are attached to the fork, and vξ , vη ,vζ are the components of the point C’s velocity in this frame.

The dynamic equations of motion for arbitrary model of the wheel-plane interaction are

ż = vz, mv̇z = Fz −mg

m(v̇ξ − vη θ̇) = Fξ +T cosθ , m(v̇η + vξ θ̇) = Fη −T sinθ

J1θ̈ = Mz −bT sinθ , J3χ̈ =−Fξ R+Mη

Here g is gravity acceleration, J1 and J3 are equatorial and axial momets of inertia, Fξ , Fη , Fz are the projections
of the friction force and normal reaction, Mη , Mz are rolling and spinning friction torques with respect to the point
M.

If the wheel does not slip and the supporting plane is absolutely rigid then we have

vξ −Rχ̇ = ẋcosθ + ẏsinθ −Rχ̇ = 0, vη = ẋsinθ − ẏcosθ = 0, vz = ż = 0



for velocities and coordinates respectively. These contraints allow calculating of reactions and reducing the order
of the system. Thus, for ideal constraints the dynamics is governed by two separable ODE of second order, and the
first one is the mathematical pendulum equation:

J1θ̈ +bT sinθ = 0 (1)

(J3 +mR2)χ̈ = T Rcosθ

The components of the reaction are

Fz = mg, Fξ =− jT cosθ , Fη = T sinθ +mRχ̇ θ̇ , j = J3/(J3 +mR2)≤ 1
2

The wheel does not slip if the reaction belongs to the friction cone:√
F2

ξ
+F2

η ≤ f Fz

The phase portrait of ODE (1) and the areas of slipping for some fixed coefficient f of dry friction and fixed
velocity χ̇ is presented on Fig. 2. We obtain that if 0 < T < f mg, then for a fixed value χ̇ the wheel does not slip
into the region bounded by curves that do not intersect the axis θ̇ = 0. This region contains a stable stationary
motion and small oscillations in its vicinity. If f mg ≤ T ≤ j−1 f mg, then the region of motion without slipping is a
centrally symmetric figure. When T > j−1 f mg, then a motion without slippage is possible inside a closed region
in the neighborhood θ =±π/2, θ̇ =∓0.7 and do not contain full trajectories. However, with the growth of χ̇ these
areas are tighten to the axis θ̇ = 0 . Therefore, for any arbitrarily small oscillation θ(t) in a neighborhood of a
stationary motion θ = 0, χ = T R

J3+mR2
t2

2 after some time the wheel begins to slip.
However, if we include dissipative spinnig and rolling torque of viscous type

Mη =−c1χ̇, Mz =−c2θ̇

then the equations of motion are

J1θ̈ +bT sinθ = −c2θ̇

(J3 +mR2)χ̈ = T Rcosθ − c1χ̇

and the solution θ = 0 becomes assimptotically stable. The velocity of proper wheel rotation is bounded:

χ̇ =
T R
c1

+

(
χ̇0 −

T R
c1

)
exp
(
−c1 j

J3
t
)
≤ max

(
T R
c1

, χ̇0

)
It means that for some value of driven force T there exist the vicinity of the point θ = 0 such that the motion
starting there asymptotically tends to rectilinear motion and slippage do not occur.

The results obtained for non-holonomic constraint is interesting to compare with that for the system with
sliding. We take the model of distributed dry friction [1]: it gives all types of friction (sliding, rolling, spinning)
that depends both on vM and ω = θ̇ez + χ̇eη . Numerical simulations show that for some values of parameters, the
rectilinear motion of the wheel is stable for small values of χ̇ and unstable for large χ̇ . On Fig. 3, the wheel of
mass m = 5 starts with zero speed χ̇ and θ(0) = 0.1 rad. The driven force T = 5 and the coefficient of differential
Coulomb law in the contact patch is f = 0.2. While the speed is small, θ fastly decreases to zero, but after
approximately 45 time-units the oscillation begins and grows signicantly up to a certain finite amplitude.
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