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The most effective methods for the parallel multibody dynamics solution are the ones with the logarithmic 

complexity. This paper describes the extension of the advanced procedure [1-2] of the parallelized dynamic 

solution of flexible multibody system from the serial kinematic chain into the multibody systems with kinematical 

loops.  

Previous work. The basic method is based on the modified state space and the efficient set of natural coordinates 

[1-2] and modal coordinates for the description of the deformation in the system. The the equation of motion for 

single body i is derived as 

𝑴𝑖𝒔𝑖̈ + 𝑲𝑖𝒔𝑖 = 𝑸𝑖 (1) 

 

where Mi is the mass matrix, Ki is the stiffness matrix and Qi is the vector of generalized forces. Using the 

procedure described in [1-2] exploiting the Schur complement the resulting system of equations of motion (EOM) 

is obtained 

 𝑴𝒔̇ + 𝑱𝑻𝝁 = 𝒑∗ (2) 

 𝑱𝒔̇ = −𝛼𝒇(𝒔) (3) 

where 𝑴 is the diagonal mass matrix, 𝑱 is the Jacobi matrix corresponding to the constraints 𝒇, 𝛼 is the coefficient 

of the Baumgarte stabilization, 𝒔 is the vector of natural coordinates describing the absolute system position, 𝒑∗ 

is the modified momentum of the system and 𝝁 is the vector of the new Lagrange multipliers. Expressing 𝒔̇ from 

(2) and substituing into (3) the resulting system for unknown 𝝁 is obtained 

 

 𝑱𝑴−1𝑱𝑇𝝁 = 𝛼𝒇(𝒔) + 𝑱𝑴−1𝒑∗ (4) 

which can be simply written as follows 

 𝑨𝝁 = 𝒃 (5) 

The system of equations (5) is sparse, symmetric, positive definite with band structure for the case of a simple 

kinematic chain of n bodies (Fig. 1 a). The system (4) has a structure of blocks (Fig. 1 b) corresponding to particular 

bodies with equivalent (small) sizes.  

 
Figure 1 a): The simple kinematic chain  b) The resulting matrix-structure 

Thus the whole system of the equations can be understood as a set of the interconnected subsystems 

representing by the blocks for unknown vectors 𝝁𝒊. The number of elimination levels is log2(n) and this is 

proportional to the resulting computational costs of elimination process. Based on the comparison of the 

application of elimination process and Cholesky decomposition the combination of both approaches has been 

proposed [1-2]. The result is the efficient combination of elimination process and Cholmod procedure (Fig.2). This 



combination has been investigated for the small blocks (9x9). In the case, that the 9x9 division is used and there 

are not enough processors for the matrix transformations, the process is following. The number of subsystems ns 

for elimination is the same as the number of bodies n. The number of processors np is smaller than n. Therefore it 

is possible to evaluate only np elimination in parallel on one elimination level and the rest has to be carried out 

after that.  

 
Figure 2: Efficient combination of the elimination with the Cholesky decomposition 

It is obvious, that the system of equations (5) can be split into the sub-blocks which number corresponds to 

the number of processors (ns= np). However, it is always better from the complexity point of view to split the 

system in that way, that the number of sub-blocks corresponds to the number of particular bodies in the kinematical 

system (ns= n). Thus the optimal elimination process is obtained, see [2]. The complexity of the solution is very 

promising. The example in [2] demonstrates that 10 times increased of efficiency is possible even on 10 processors 

for small flexible multibody systems (20 bodies with 10 flexible modes). 

 

New contribution. The limitation of this approach is that it is valid just for kinematic chain or branched kinematic 

tree. The problem is the occurance of kinematic loop that leads to matrix structure from Fig. 1b with broader 

bandwith. This paper is devoted to the description of solution of this problem. 

The approach for solving the multibody systems with kinematic loops consist in the dividing suitable body 

within the loop into two bodies and their firm connection. The connection is described by appropriate constraint 

within the constraints f(s) in (3). The only requirement is that the distance of coordinates describing the position 

of mutually constrained bodies in the enumeration of coordinates in the vector s is small. This corresponds to the 

resulting bandwith of matrix in Fig. 1b. This can be achieved by repeated division of bodies. This leads to the 

increase of bodies and coordinates and potentially the computational costs. However, the computational costs 

depends on the number of bodies logarithmically and thus the increase of numer of bodies is negligible. If the 

number of bodies is for example increased 2 times then the computational costs are increased just by log2(2n)=1+ 

log2(n).  

The example is in Fig. 3. The simple kinematical loop is in Fig. 3a. Its representation in the order of coordinates 

is in Fig. 3b. The reduction of distance of constrained coordinates is depicted in Fig. 3c. It is achieved by the 

dividing the first body in the order into three ones and introducing equivalent constraints. The resulting distance 

of constrained coordinates is reduced from 6 to 3.  

 

                      
(a)                                                  (b)                                                                           (c) 

Figure 3: (a) The simple kinematical loop (b) The order of coordinates (c) Solution with added bodies 

The resulting computational complexity is very promising as the very advantageous computational complexity 

for multibody systems with just kinematic chains is extended towards multibody systems with kinematic loops.  
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