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Fig. 1: Deploying Solar Sail Model

The deployment dynamics and vibration characteristics of a flexible multi-
body system, namely a solar sail consisting of four thin membrane quadrants
(with negligible bending stiffness) and four flexible booms (approximated as
Euler-Bernoulli beams), shown in Fig. 1, are studied. The ultimate objective is
to further the mathematical understanding behind the transient dynamics of solar
sails, hence facilitating their design and successful deployment.

In [1], a separate work upon which the present paper builds, the out-of-plane
deflections of two booms, ua(xab, t) or ub(yab, t), and that of the membrane quad-
rant in-between, wab(xab,yab, t) (superimposed over the booms’ deflections as in
[2]) are expanded, using nB and nM modes, respectively, as:

ua(xab, t) = p
ᵀ
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ᵀ
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ᵀ
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where pa ∈RnB , pb ∈RnB , and qab ∈RnM are the time-varying generalized coordinates of Boom (a), Boom (b) and
Membrane (ab), respectively. The components of Ψ and Φ are the eigenfunctions of a cantilevered beam and a
clamped membrane, which are time-varying for they depend on xab/L(t) and/or yab/L(t). A similar approach (but
for one-dimensional beam motion) was used in [3], among others. The following discretized equations of motion
for a single sail quadrant consisting of Membrane (ab) attached to Booms (a) and (b) were obtained in [1]:[
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ᵀ
contains all of the Qab quadrant’s generalized coordinates. The quadrant-level matrices

denoted by a tilde are ñ× ñ with ñ = 2nB + nM, and are constructed via spatial integration of some functions of
Ψ and Φ, as detailed in [1]. Recognizing a need for completeness in modelling and simulation, the present work
first provides more details on extending the above formulation to a complete four-quadrant sail. To this end, the
quadrant-level matrices are “lifted” into system-level forms that correspond to the system-level collection of all
generalized coordinates, q̄ , [ pᵀ
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b pᵀ

c pᵀ
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ᵀ
. First, each of the quadrant-level matrices are

partitioned into nine submatrices (for example M̃M,ab,i j with i, j ∈ {1,2,3}) that correspond to pa, pb, and qab.The
system-level mass matrix corresponding to the Qab quadrant’s membrane, denoted by M̄M,ab and of dimensions
n̄× n̄ with n̄ = 4nB +4nM, can be partitioned into 64 blocks, namely M̄M,ab,pq with p,q ∈ {1, · · · ,8}. Of these 64
blocks, nine are replaced by M̃M,ab,i j, and the rest are all zero matrices of appropriate dimensions. Summarized in
Tab. 1 is the mapping between the indices of the quadrant-level matrices and those of the system-level matrices.
For example, the M̃M,ab,23 block of the quadrant-level M̃M,ab replaces the M̄M,ab,25 block of the system-level M̄M,ab,
and so on. Lastly, after all of the matrices in Eq. (2) for all four quadrants are lifted into their system-level form
using the above procedure and the mapping in Tab. 1, the overall system matrices are computed by simple addition.
For example, the membranes’ total mass matrix is given by M̄M = M̄M,ab+M̄M,bc+M̄M,cd+M̄M,da. The resulting
system matrices replace their quadrant-level counterparts in Eq. (2) to describe the complete system’s dynamics.

Quadrant Qab Qbc Qcd Qda

Quadrant-Level (i, j) 1 2 3 1 2 3 1 2 3 1 2 3
System-Level (p,q) 1 2 5 2 3 6 3 4 7 4 1 8

Tab. 1: Mapping between Block Indices of the Partitioned Quadrant-Level and System-Level Matrices



Modal Frequency ω1 ω2 ω3 ω4 ω5 ω6

Using FEM [4] (rad/s) 0.05180 0.20848 0.20848 0.30520 0.36781 0.36781
Present Method (rad/s) 0.05328 0.20954 0.20954 0.31002 0.37091 0.37091

Tab. 2: Comparison of the Modal Frequencies (for Fully-Deployed Sail) Obtained Using the Present Approach vs. FEM in [4]

Fig. 2: First Four Distinct Modes of Solar Sail with Boom Length L = 50
√

2 m (for Comparison with Figure 6 in [4])

Fig. 3: Snapshots of Simulated Sail Deployment Process (from L0 = 10 m to L f = 15 m in 15 s)

Before studying deployment, validation of the basics of the modelling and simulation using past literature is
in order. To this end, the mode shapes and frequencies of the entire sail, after full deployment into a 100 m×
100 m square shape, are compared against those obtained in [4] using the different formulation of finite element
method (FEM), assuming the same geometric and physical parameters for the sail. The first 6 modal frequencies
(obtained upon neglecting axial tension imposed on the booms, consistent with [4]) as listed in Tab. 2 show less
than 3% discrepancy compared with those reported in [4], and the associated mode shapes (corresponding to the
distinct frequencies) presented in Fig. 2 resemble those in [4]. As expected, the complete sail has additional
symmetric/anti-symmetric modes that would not appear in the single sail quadrant considered in [1]. Given that a
primary contribution of this paper is deployment studies of a solar sail with time-varying boom lengths, a sample
deployment sequence with a realistic extension profile (with initial displacement on one boom) is depicted in Fig. 3.

Also to be presented are numerical studies on the effects of varying the system’s geometric and physical
properties. To this end, the system-level analogue of Eq. (2) is recast into first-order form (as in [5] for FEM):
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where x̄ , [ ˙̄q
ᵀ
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ᵀ
]
ᵀ
. The eigenvalues of the resulting system are then plotted as functions of the membrane

prestress (for various extension rates) to determine the on-set of dynamic instability (if there is any).
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