
Extended Abstract The 5th Joint International Conference on Multibody System Dynamics 

 June 24 – 28, 2018, Lisbon, Portugal 

Dynamics of Rigid-Flexible Spatial Four-Bar Mechanism 

Paramanand V. Nandihal and Subir K. Saha 

Department of Mechanical Engineering 

Indian Institute of Technology Delhi 

New Delhi-110016, Delhi, India 

paramanandn@gmail.com, saha@mech.iitd.ac.in 

Flexible mechanisms are known for lightweight, less weight-to-power ratio, etc., which are desired for 

efficient operations of the machines having such flexible mechanisms. Various formulations for the dynamic 

simulation of mechanisms having both rigid and flexible links i.e., rigid-flexible systems were reported in the 

papers [1-3]. They presented the difficulty in the dynamic formulation due to the presence of multiple closed-

loops, structural coupling, and nonlinearity, etc. This demonstrates the need for further improvements in the 

dynamic algorithms in terms of computational efficiency and numerical stability.  

The Decoupled Natural Orthogonal Complement (DeNOC)-based formulation is proven advantageous for 

many systems such as serial chain systems [4] tree-type robotic systems, hyper-degrees-of-freedom systems say, 

ropes, chains, etc., fixed and floating base robotic systems, closed- and multi-loop rigid multibody system [5], 

and serial flexible multibody systems [6]. In this paper, we demonstrate the methodology with a spatial four-bar 

mechanism. For that, its kinematics was described first. Then, the dynamic equations of motion of the spatial 

mechanism were derived using DeNOC matrices for systems with rigid and flexible links. The forward dynamics 

and simulation of the closed-loop rigid-flexible spatial four-bar mechanism will be presented in this paper. The 

simulation results using the proposed methodology were compared with the results generated using the 

commercial software RecurDyn thus, verifying the results. 

1 Methodology 

In order to transmit the motion between non-parallel axes a spatial four-bar mechanism is used. It comprises 

of four links with one fixed link and three moving links having Revolute (R), Spherical (S), Spherical (S) and 

Revolute (R) joints at joint-1, joint-2, joint-4, and joint-5, respectively, as shown in Fig. 1(a). Hence, it is also 

called RSSR mechanism. In this mechanism, the revolute joints, joint-1 and joint-4 are in different planes, and 

the axes of these revolute joints are non-parallel. The RSSR mechanism has two degrees of freedom (DOF) in 

that one of them is redundant. This is the rotation of the coupler about its own axis. The RSSR mechanism was 

analyzed by cutting it at joint-5, i.e., the spherical joint, to form two subsystems, namely, two open-loop serial-

chain systems, as shown in Fig. 1 (b). The resulting open-loop subsystems are the two-link serial-chain 

manipulator and the single-link system. The cutting of a spherical joint was intentional as it reduces the 

complexities of writing of equations of motion.  

The cut-opened joint was then substituted with suitable constraint forces denoted with λ, which is known as 

the vector of Lagrange multipliers. The Lagrange multipliers are λx, λy, and λz along x, y, and z-directions, 

respectively. These multipliers were treated as external forces to the subsystems-I and II. The dynamics of rigid-

flexible spatial four-bar mechanism was formulated for the following cases: 

Case 1: Rigid-Rigid-Rigid (RRR): In this case, the dynamic analysis was done considering all three links 

i.e., crank (#4), coupler (#3), and rocker (#1) as rigid (R). Fig. 1 shows the RRR RSSR mechanism. 

Case 2: Rigid-Rigid-Flexible (RRF): In this case, the crank (#4), and the coupler (#3) were treated as rigid 

(R), whereas the rocker (#1), was considered as flexible (F) link.  

Case 3: Flexible-Flexible-Flexible (FFF): Here all the three links were considered as flexible (F). 
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Fig. 1: RSSR mechanism 

 

 

Modeling started with the formation of the DeNOC matrices for the resulting rigid-flexible subsystems by 

cutting the joint. For that, expressions of linear and angular velocities ( t ) of all links were written in terms of 

joint velocities ( θ ). This is given by 

l dt N N θ  (1) 

Matrices ( l dN N ) relating linear and angular velocities of the links to the joint rates are called the DeNOC 

matrices. Then, the equations of motion for each subsystem formulated as 

 
I

I I I I   I q h τ τ  

 
II

II II II II   I q h τ τ    

 (2) 

The procedure was illustrated through the forward dynamics of the RSSR manipulator for free fall simulation. 

The detailed formulation and results generated will be presented in the full paper. Finally, what has been 

presented here is the dynamic formulation of closed-loop rigid-flexible spatial four-bar mechanism using the 

DeNOC methodology and its benefits.  
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