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Influence of soft and rigid contact models on granular dynamics
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We compare in the weak form, the efficiency and accuracy of the compliant and rigid contact models. The first
approach, also known as “discrete element method via penalty” or simply DEM-P, is commonly used in the soft
matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack [1, 2]. The
second approach, called DEM-C from “complementarity”, considers the grains perfectly rigid and enforces non-
penetration via complementarity conditions; it is commonly used in robotics and computer graphics applications
and had two strong promoters in Moreau and Jean [3, 4]. DEM-P and DEM-C are manifestly unlike each other –
they use different (i) approaches to model the frictional contact problem; (ii) sets of model parameters to capture
the physics of interest; and (iii) classes of numerical methods to solve the differential equations that govern the
dynamics of granular materials. Our study of granular materials was composed of five experiments: shock wave
propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we used to compare the DEM-
P and DEM-C solutions.

DEM-P and DEM-C: method summary. DEM-P is a regularization method introduced to replace a finite ele-
ment analysis at each contact point [1, 2, 5, 6]. It relies on a relaxation of the rigid-body assumption and a surrogate
deformation of two bodies in mutual contact Although the shapes might be overly complex, it is customary to com-
bine the surrogate deformation with the Hertzian theory, which is only applicable for a handful of simple scenarios
such as sphere-to-sphere or sphere-to-plane contact, see for instance [5], in order to yield a general methodology
for computing the normal (Fn) and tangential (Ft) forces at the contact point. As an example, a viscoelastic model
based on Hertzian contact theory, which was used for the current study, takes the form

Fn =
√

R̄δn (Knδn−Cnm̄vn) (1a)

Ft =
√

R̄δn (−Ktδt −Ctm̄vt) , (1b)

in normal, n, and tangential, t, directions, respectively. Herein, δ is the overlap of two interacting bodies; R̄ and
m̄ represent the effective radius of curvature and mass, respectively; and v is the relative velocity at the contact
point. For the materials in contact, the normal and tangential stiffness and damping coefficients Kn, Kt , Cn, and Ct

are obtained, through various constitutive laws, from physically-measurable quantities, such as Young’s modulus,
Poisson ratio, and the coefficient of restitution [5].

DEM-C takes a different tack; it draws on a complementarity condition that imposes a non-penetration unilat-
eral constraint, see Eq. (2a). That is, for a potential contact i in the active contact set A (q(t)), either the gap Φi

between two geometries is zero and consequently the normal contact force γ̂i,n is greater than zero, or vice-versa.
The Coulomb friction model is posed via a maximum dissipation principle [7], which for contact i involves the
friction force components (γ̄i,w, γ̄i,u) and the relative motion of the two bodies in contact, see Eq. (2b). The fric-
tional contact force associated with contact i leads to a set of generalized forces, shown with an under-bracket in
Eq. (2c), which are obtained using the projectors Di,n, Di,u, and Di,w, see, for instance, [8]. This leads in Eq. (2) to



a so called differential variational inequality problem [7]

0≤Φi(q)⊥ γ̂i,n ≥ 0 (2a)

(γ̂i,u, γ̂i,w) = argmin√
γ̄2

i,u+γ̄2
i,w≤µi γ̂i,n

vT (γ̄i,u Di,u + γ̄i,w Di,w) (2b)

M(q)v̇ = f(t,q,v)+G(q, t)λ̂ (2c)

+ ∑
i∈A (q)

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w)︸ ︷︷ ︸
ith frictional contact force

.

Numerical experiments. For the purpose of quantifying the similarities and differences of DEM-P and DEM-C
we used open-source software package, Chrono [9, 10], that implements both approaches. We considered five
benchmark tests, including a wave propagation experiment, a cone penetration test, a direct shear test, a triaxial
test and a hopper flow analysis. The metrics of interest in this DEM-P vs. DEM-C comparison were solution
accuracy, robustness, and required computational effort as reflected in simulation run times.

Conclusion. This exercise helped us reach two conclusions. First, both DEM-P and DEM-C are predictive;
i.e., they predict well the macro-scale emergent behavior by capturing the dynamics at the micro-scale. Second,
there are classes of problems for which one of the methods has an upper hand. Unlike DEM-P, DEM-C cannot
capture shock-wave propagation through granular media. However, DEM-C is proficient at handling arbitrary grain
geometries and solves at large integration step sizes smaller problems; i.e., containing thousands of elements, very
effectively. The DEM-P vs. DEM-C comparison was carried out using a public-domain, open-source software
package; the models used are available on-line.
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