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Complex system simulations typically cover several domain-specific problems to be solved within tailored sim-
ulation tools. Analysis of the entire system behavior strictly requires faithful handling of the subsystem interactions
- in terms of co-simulation - which crucially leads to efficient coupling strategies and related algorithms [1, 2]. Co-
Simulation treats subsystems independently and data exchange is performed at predefined communication points in
time for synchronization purposes. In connection to bidirectional dependencies between subsystems the resulting
causality problem has to be solved by extrapolation of input quantities. In non-iterative (explicit) co-simulation the
extrapolation of input quantities is directly associated to an estimation error, i.e. the discretization error. Especially
for highly non-linear and stiff system dynamics, it is crucial to have more advanced (model-based) strategies in
place. The aim of this paper is to present a model-based extension to an existing co-simulation algorithm, which
minimizes the coupling error prior to (pre-step) the individual subsystem simulations.
The algorithm is based on time-variant linear subsystem approximations to increase co-simulation performance in
terms of accuracy and stability. Three main steps are defined: (1) estimation of the exact (solution) output utiliz-
ing an introduced Error Differential Equation, (2) model-based extrapolation of output quantities by model-based
incorporation of cross-couplings and (3) optimization of the final subsystem inputs for the next macro-time step
(pre-step) accordingly.

The three steps are based on the linearisation of the individual subsystems Si, according to the subsystems in-
puts ui and the related subsystem simulation results ȳi
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∂u stands for the appropriate input-output sensitivities, where N denotes the number of
subsystems. To keep the notation simple, the main steps are exemplarily shown for a fully coupled system of two
subsystems. The first step of the algorithm is to solve, the introduced Error Differential Equation(
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which describes (1st order approx.) the deviation of the simulation result ȳ to the exact solution y, with

δ1 = y1− ȳ1, δ2 = y2− ȳ2,

ε2 = ȳ2−u1, ε2 = ȳ1−u2.

In a second step the (approx.) exact solution y is model-based extrapolated, with the use of(
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where ye denote the extrapolation of y, in the next macro time step. The result y(Tk) of the preceeding step
represents the initial values. Due to model-based extrapolation cross coupling effects (off-diagonal entries) are



considered. In order to optimize the coupling error a minimization of α := |ye− ȳ| over the next macro time step
is performed. This leads, in the case of zero order hold extrapolation for the input ui, to

φBi ·ui = (yei−φAi ȳi) , (4)

where φAi and φBi denotes the appropriate transition matrices of the subsystem Si. In the case, that φBi is singular,
the pseudo inverse should be used to compute ui. If the number of inputs is higher than the number of outputs per
subsystem, extra conditions are needed to bring φBi into a regular and quadratic structure. Otherwise, if there are
more outputs in a subsystem than inputs a least square solution is the preferred way to compute ui.

Stiff Non-Linear Multibody System Example

For demonstration, a recently analyzed non-linear multibody system example, a mathematical pendulum coupled
to an oscillator, representing a stiff system, has been chosen [3]. The linearisation is based on the analytical
computation of the input-output sensitivities and therefore ∂Si/∂u and ∂Si/∂ ȳ are updated at every communication
point in time. The benefit in accuracy of the introduced algorithm compared to the classical parallel zero order hold
(ZOH) coupling algorithm [3] and the classical nearly energy preserving coupling element (NEPCE) algorithm
[4], is depicted in Figure 1. In contrast to the global error estimation in [3], the coupling error is mitigated by the
introduced algorithm for H < 10−2. Meaning, with the use of the introduced algorithm it is possible, to enlarge
the macro step-size and therefore the communication effort between the subsystems is reduced, improving the
performance of the co-simulation.

Fig. 1: Mean error, according to the monolithic solution of the linearisied problem, of the introduced pre step algorithm compared to NEPCE and ZOH
algorithms. parameters equal to [3]; K = 103N/m; d = 10 Ns/m for t ∈ [0,1]; λmax/λmin ≈ 105.

Conclusion

For efficient handling of stiff system model-based numerical schemes have to be applied. In contrast to existing
approaches, the proposed algorithm is based on a 1st order approximation of the exact solution and, in addition,
performs an optimization-based pre-step correction, resulting in a significant performance improvement in terms
of accuracy and stability. Enlargement of the macro step-size (≈ 100 times) yields overall co-simulation improve-
ment. Future work focusses on identification of sensitivities, handling of DAE Systems and industrial applications.
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